Research Report 2017/2018
University Children’s Hospital Basel
Table of Contents

Editorial 4

UKBB Research at a Glance 6

Future Development of Research Infrastructure 8
- The Botnar Research Centre for Child Health 9
- Ambulatory Study Center 10
- Biobanking – Concept for the Future 12

Rising Stars 13
- Translational Cellular Immunotherapy 14
- Neuronal Control of Colonic Immune Cells in Hirschsprung’s Disease 15
- The Spine-Doc with the SpineBot 16
- Assuring Safety in the Treatment of Chronic Rheumatic Diseases 17

Research Groups 18
- Paediatrics and Paediatric Pulmonology Research 20
- Translational Medicine Breath Research 21
- Computational Physiology and Biostatistics 22
- Paediatric Infectious Diseases and Vaccinology 23
- Vaccine Safety Research and Brighton Collaboration Foundation 24
- 1) Paediatric Mycobacterial Research 25
- 2) Migrant Health Research 25
- Paediatric Diabetology 26
- Paediatric Endocrinology 27
- Paediatric Gastroenterology and Nutrition 28
- Clinical Research in Paediatric Cardiology 29
- Neonatal Respiratory and Clinical Epidemiology Research 30
- Fetal and Neonatal Stress Research 31
- Paediatric Neurology and Developmental Medicine 32
- Neuromuscular Research 33
- Paediatric Anesthesia 34
- Centre for Paediatric Pharmacology and Pharmacometrics (PedPP) 35
- Outcome Research in Childhood Cancer 36
- Immune Thrombocytopenia Research 37
- Childhood Leukemia 38
- Paediatric Immunology 39
- Developmental Immunology 40
- Paediatric Surgery Research 41
- Molecular Strategies in Paediatric Surgery 42
- Computational Spine Biomechanics 43
- Bone Tumor and Limb Reconstruction 44
- Human Locomotion Research 45

Publications 2017/2018 46

Promotions and Honours 84
- Habilitations/Dissertations/Master Thesis 86
- Appointments 92
- Awards 93
- Young Investigators 95
- Congresses/Symposia 2017/2018 organised by UKBB 97

Facts and Figures 98
- Funding and Research 100
- Employees and Publications 104

Notes 105

Impressum 107
I am very pleased to present the UKBB research report for 2017 and 2018 to interested researchers, collaborators, colleagues from clinical and administrative fields, and to the wider public. The past two years were characterised by a number of far-reaching advancements in the UKBB research infrastructure, such as the implementation of a general research consent procedure, a strong increase in the number of studies supported by the paediatric clinical trials unit at UKBB and the initiation of a structured approach towards standardised biobanking in our wet lab. Within this research report, dedicated articles will cover the latter two topics. Implementing a general research consent procedure in a hospital is an enormous undertaking. This is particularly true for a children’s hospital due to, e.g. its highly vulnerable patient population and the requirements for age-specific consent. Nevertheless, implementing general research consent at UKBB is a success story: First evaluations indicate a parental consent rate of about 80–90% in regular inpatients. This rate is far above expectations and demonstrates that the vast majority of parents and children visiting UKBB are indeed willing to support research. It also underlines the valuable role of families in helping scientists to conduct research in order to improve health outcomes in children.

Significant Changes in Paediatric Research Infrastructure in Basel

Over the last two years, there have been considerable improvements in the paediatric research landscape in Basel. First and foremost, this is reflected by the creation of The Botnar Research Centre for Child Health (BRCCH) which will be presented in a dedicated article in this report. Creation of the BRCCH was a team effort and was only possible due to the outstanding work of the planning groups. The BRCCH operating institutions are the University of Basel and ETH Zurich. BRCCH has a clear vision: To establish itself in the next few years as the leading institution conducting use-inspired cutting-edge research to improve the health and well-being of children and adolescents worldwide. Notably, UKBB and the Swiss Tropical and Public Health Institute in Basel are official partner institutions of BRCCH.
Support of Students, Young Scientists and Mid-level Faculty

UKBB has continued to specifically support young scientists through targeted early career programs, such as the Club Paediatrics for undergraduate students and the Special Research Program Paediatrics for junior doctors in paediatric training, supported by the Botnar Foundation. As a new feature in the current report, we will not only provide reports from senior research group leaders but will also present some of our mid-level faculty, the so-called ‘rising stars’, who represent an important group of researchers, clinician-scientists and teachers essential to the functioning of our research environment. This research staff represents a driving force of scientific development and is a dependable resource, supporting both young scientists and established senior researchers and also professorial faculty.

Personalised Health

Lastly, the ongoing, global process of digitalisation of health and research-related data and procedures, as demonstrated by the Swiss Personalised Health Network (SPHN), enables (and requires) researchers in all fields to rethink and develop new methods of performing and connecting research across all disciplines. This process is very demanding but also offers unique opportunities, potentially leading to a new level of translational research initiatives that will hopefully translate into beneficial health outcomes for children in the future. UKBB has a matched strategy together with the University of Basel and the USB to address upcoming scientific and infrastructural challenges.
UKBB Research at a Glance

Vision
Research groups at UKBB operate on an international level, demonstrate outstanding research excellence and have a clear focus leading to beneficial effects on health in infants, children and adolescents.

Research Goals
The main goal of our research is to gain scientific knowledge across basic, translational and clinical research fields to improve diagnosis, treatment and prevention of diseases in the entire paediatric age range. We aim to collaborate with associated institutions of SwissPedNet, other partner institutions within and beyond Switzerland and industry partners in clinical trials. We promote truly translational research from bench to bedside, support young scientists in the development of their career through fostering their creativity, their scientific thinking and problem-solving abilities and help them acquiring methodological skills to obtain scientific independence, resulting in successful competitive research grant proposals and growth of research groups.

Key Areas of Research
The key areas of research at UKBB are largely defined by structural professorships at the University of Basel and also include very successful research groups with excellent scientific output independent of structural endowment. The key focus areas of research at UKBB are as follows:
- Developmental pediatrics and pulmonology
- Haematology and oncology
- Immunology, infectious diseases, vaccinology
- Paediatric orthopaedics

Organisation and Governance
Research at UKBB is carried out based on the current research strategy 2014–2017, under the governance of the University of Basel, and embedded in the departmental structure of the medical faculty. An updated research strategy for the years 2019 and following is currently under development by the research strategy commission, a body consisting of members from the University of Basel, UKBB board of directors, UKBB executive board, and UKBB research board. Researchers at UKBB are affiliated with one or more of the departments of biomedicine (DBM), biomedical engineering (DBE), clinical research (DKF), or public health (DPH). As of 2018, UKBB incorporates 26 dedicated research groups. The head of research and the UKBB research board are responsible for allocation of resources and reporting of research to the executive board and the board of directors.
Quality Control

Standard operating procedures and quality control measures from the department of clinical research (DKF) and its clinical trial unit (CTU) are used for clinical studies in the paediatric clinical trial unit at UKBB. In general, clinical research is embedded in DKF and proposals are handled according to the Swiss Human Research Act (HRA) and assessed by the Ethics Commission of Northwestern and Central Switzerland (EKNZ).

Members of the Research Board 2017 – 2018

Prof. Sven Schulzke, Neonatal Research (Head of Research UKBB from December 2018)
Dr. Julia Bielicki, Infectious Diseases, Medical Coordinator Paediatric Study Centre
Prof. Reinald Brunner, Neuroorthopaedics
Prof. Daniela Finke, Developmental Immunology
Prof. Dirk Fischer, Neuromuscular Research
Prof. Urs Frey, Paediatric Pulmonology
PD Stephanie Gros, Molecular Therapeutic Strategies in Paediatric Surgery
Prof. Ulrich Heininger, Infectious Diseases and Vaccinology
Prof. Georg Holländer, Paediatric Immunology
Prof. Marc Pfister, Paediatric Pharmacology and Pharmacometrics
PD Gabor Szinnai, Paediatric Endocrinology

Activities of the Research Board

Strategic planning of research
Budget and infrastructure organisation
Allocation of resources to research groups
Career development of young investigators
Organisation of the annual research day
Reporting to executive board and board of directors
Future Development of Research Infrastructure
Children and adolescents constitute about a third of the world’s population and their health status is important for every country and society. Many of the approximately 8 million deaths in 2018 among children and adolescents could have been averted with appropriate preventive measures and adequate therapies. The development of effective next generation healthcare solutions is therefore the mandate of the newly created Botnar Research Centre for Child Health (BRCCH).

Co-founded in September 2018 by the University of Basel and the Swiss Federal Institute of Technology (ETH) Zurich in Basel, and supported by a generous grant from the Fondation Botnar, BRCCH will promote research into the health and well-being of children and adolescents around the world. Conceived jointly by the two universities, the Centre’s unique scientific focus strives to integrate molecular, cellular, bioengineering and digital approaches in health sciences to address unmet medical needs and implement novel solutions in economically developed societies as well as low and middle-income countries. In addition to the development of novel diagnostic methods and therapies, BRCCH will also foster the development of innovative digital tools that empower care takers in medical decision making and assist patients and their parents in becoming key stakeholders in their own health and care. Importantly, the Centre’s activity will also address societal, health systems, ethical, economic and legal aspects related to these novel diagnostic and therapeutic strategies as new technologies and data governance, stewardship, and management will need to be implemented to collect precise health care information.

BRCCH has forged a close collaboration with the Children’s Hospital of the Cantons of Basel (UKBB) to realise its mission. This alliance will draw on the hospital’s broad expertise in translational and clinical paediatric research in diabetes, infectious diseases/immunology, functional restoration by regenerative surgery, and cardio-respiratory diseases. The close partnership between BRCCH and UKBB will promote the design and implementation of health care solutions utilising artificial intelligence, innovative hardware and modern software technologies to be be employed both in hospital and domestic settings.
Future Development of Research Infrastructure

Ambulatory Study Center

For the past three years the Ambulatory Study Center (Ambulantes Studienzentrum ASZ) has been actively supporting clinical research at UKBB through a growing team of research-experienced medical and nursing staff. Strategic medical leadership is provided by Dr. Julia Bielicki who, together with a study coordinator and coordinating study nurse, constitutes the team in charge of the day-to-day running of the ASZ. Examples of offered activities include maintenance of trial files, patient visits, data capture, monitoring, management of investigational medicinal products, processing and storage of laboratory samples, archiving, and maintenance of patient rooms for study visits.

In 2018, the ASZ looked after nearly 400 patients in 14 studies. This included two SwissPedNet studies funded under the prestigious SNSF Investigator-Initiated Clinical Trials call: the Omega3-Study (Efficacy of Omega-3 fatty acids as first line treatment in paediatric depression; PI Prof Klaus Schmeck) and the KIDS-STEP Study (Effect of adjunct oral corticosteroids on recovery and need for readmission in children admitted to hospital with pneumonia, PI Prof Ulrich Heininger). Both trials are challenging placebo-controlled studies making use of the full spectrum of ASZ services.

Currently, the ASZ supports nearly twenty clinical research projects. Of these, three are industry-sponsored trials characterized by the need to ensure all resulting data can be used to support licensing and labelling of the studied compounds. For this purpose, the ASZ uses a fully developed and regularly maintained quality management process shared with the Department for Clinical Research of the University Hospital Basel. The implementation of general consent in line with nationally agreed requirements is an example of an overarching activity lead by the ASZ. Introduced in 2018, and encouragingly for research involving children at UKBB, we observe very high acceptance rates of 90% or above by approached families.

For 2019, our aim is to achieve an even closer integration of UKBB clinical research activities and to connect local and multicenter studies and national networks, most importantly SwissPedNet, by building on existing expertise and by further developing transparent and consistent pathways for implementing high quality clinical studies.
Future Development of Research Infrastructure

Biobanking – Concept for the Future

The growing UKBB biobanking team around Stephanie Gros aided by Andrea Zelmer is currently in the process of establishing a reliable biobanking management system. Based within the Swiss Biobanking Platform (SBP) and the Basel Personalized Health Initiative the biobank will guarantee the safe and controlled storage of biological samples and strengthen research opportunities of the UKBB.

A biobank contains samples of human and non-human origin, for example liquids, tissue samples, cells, bacteria or others. Samples are intended for diagnostic, therapeutic or research purposes. The sampling is regulated and fully documented. An appropriate governance is required.

The Swiss Biobanking Platform is orchestrating the development of a network of biobanks. The goal is to make sample and data sharing possible throughout Switzerland. Documentation and harmonisation of all biobanking processes including sample collection, transport, treatment, preparation, storing, and distribution will ensure comparable quality standards.

Biobanking is regulated by national and international legal requirements and has to be compliant with all ethical and quality standards. Currently, biobanks are not available in all Swiss research and hospital institutions or do not yet conform with regulations. Embedded in the personalized health initiative of the University Basel, the standards and facilities for biobanking are currently defined.

To ensure high impact research on children’s diseases, sampling of growing numbers of bio-specimen is becoming increasingly important. While the UKBB is faced with an expanding number of biosamples, the need for clearly structured, regulated and documented approaches is becoming essential. Biosampling will be accompanied by managing increasing numbers of patient data. Ensuring legally and scientifically correct handling of samples and data can only be achieved by defining and implementing new logistical and IT processes. Establishing governance for the biobank will ensure effective use of these samples for relevant research questions. Qualified personnel are essential to professionalize these processes.

Establishment of UKBB biobanking will ensure high bio-sample quality, make cooperative sharing of biological resources more accessible and will strengthen the UKBB nationally to remain competitive on the international level.
Rising Stars
Rising Stars

PD Maya C. André, MD

Group members
- Dr. Hanna Zhao, PostDoc
- Lisa Schwab, PhD student
- Henning Peters, PhD student
- Franziska Ginsberg, MD student
- Katharina Seel, MD student
- Ma Nan, MD student
- Sarah Bühler, technician

Translational Cellular Immunotherapy

Since 2007, we have studied conditions under which natural killer (NK) cells target paediatric acute B cell leukemia. To this aim, we developed a donor-patient-specific mouse model in NOD SCID IL2Rc-/- mice (André et al., 2010, Woiterski et al., 2013) in which we use donor-specific stem cells for transplantation and patient-specific leukemia as a correlate for the individual tumor. Here we provided evidence that NK cells target paediatric B-ALL and that transfer of NK cells or the selection of a donor with certain killer immunoglobulin-like receptors is beneficial as anti-tumor effects of NK cells will be enhanced (Kübler et al. 2014, Baltner et al., 2017). We additionally showed that upon primary contact with leukemia NK cells convert to memory-like NK cells with superb GvL effects (Pal et al., 2017). Currently, we are trying to understand on the transcriptional level how epigenetically modifying drugs promote NK cell development.

Our lab is currently located at the University Children’s Hospital, Tübingen, Germany, and covers the whole spectrum of analytical methods such as complex 16-color flow-cytometric analysis of developing NK cells and minimal residual leukemic disease (MRD), flow-cytometric and RT-PCR analysis of all inhibitory/activating KIRs, electroporation-induced KIR knockdown, CRISPR-Cas9 knock-down of transcription factors, induction of leukemia or adoptive transfer and humanization of NSG mice. The lab will subsequently move to the campus of UKBB.

Our work is funded by the Jose-Carreras-Leukämie Stiftung, Deutsche Kinderkrebsstiftung, Manchest-Stiftung, Sander-Stiftung, Madeleine-Schickedanz-Stiftung and the University of Tübingen. Important collaborations include Prof. Dr. Salih and Prof. Dr. Skokowa, both University of Tübingen, and Prof. Dr. Lengerke, University of Basel.
Neuronal Control of Colonic Immune Cells in Hirschsprung’s Disease

The enteric nervous system (ENS) consists of more than 100 million neurons regulating important processes like peristalsis and electrolyte balance. Recent literature suggests a crucial role for the nervous system in fine-tuning our immune response.

In order to identify the impact of the ENS on intestinal immune cells, the research team of Dr. Simone Ross-Keck and Prof. Stefan Holland-Cunz is studying patients with Hirschsprung’s disease (HD), congenitally lacking an ENS. Although surgical therapy involves pull-through-surgery to remove affected tissue, about 50% of the children suffer from life-threatening HD-associated enterocolitis. To date the underlying pathologic mechanisms are still unclear.

To pursue this question, Dr. Ross-Keck established a Swiss- and German-wide multicentric study to recruit HD patients. Surgically removed tissue is enzymatically digested, and immune cells are isolated and analyzed using flow cytometry, Immunofluorescence microscopy and gene expression analysis. The team found out that the presence of the ENS, especially the neurotransmitter acetylcholine, protects from the development of inflammatory enterocolitis-promoting T helper 17 (Th17) T cells. The nerve fibers interact with an anti-inflammatory macrophage subtype that prevents the differentiation of Th17 T cells. The researchers follow up the patients and verify one year after pull through surgery the development of HD-associated enterocolitis. A first trend shows that children with nerve fibers develop fewer symptoms than children lacking those fibers.

The results of the 2015 established study are currently prepared for publication. Based on study results, Dr. Ross-Keck and Prof. Holland-Cunz expect to develop new diagnostic markers to predict which children are at high risk to develop enterocolitis. Follow up studies will further clarify how neurons, immune cells and the microbiome modulate each other to develop alternative immunotherapies for HD-associated enterocolitis. Dr. Simone Ross-Keck is a biologist with a focus on mucosal immunology. She performed her PhD at the Max-Planck-Institute for Immunobiology in Freiburg (DE) and completed her post-doctoral studies at the Department of Biomedicine in Basel. Since 2014, she leads the paediatric surgery research lab at UKBB.
The Spine-Doc with the SpineBot

In 2008 I first encountered the field of paediatric orthopaedics. Under the initial supervision of Prof. Fritz Hefti, I was able to experience a unique teaching and mentoring program with Prof. Carol Hasler – and continue to do so. My professional skills were deepened during a Clinical Research Fellowship at the Women’s and Children’s Hospital in Adelaide, Australia.

With an increasing focus on the treatment of paediatric spinal pathologies, and the opportunity to practice this highly specialised medicine in one of the most modern children’s hospitals, and in a region where I am socially rooted, the aim of a long-term commitment to the UKBB has been strengthened.

Thanks to financial research support from the University of Basel and targeted personal support from the Surgical Department, I was able to withdraw from clinical routine in 2018 and launch and advance various clinical research projects.

The main project relates to intraoperative measurements of segmental stiffness of the spine in children with idiopathic scoliosis using a programmable robotic device – the SpineBot. In vivo data from young patients with the corresponding pathology will be unique and can contribute to the goal of fusionless correction of spinal deformities in the future.

Further projects aim at objectifying the changes in health-related quality of life (HrQoL) in adolescent patients undergoing surgery for neuromuscular scoliosis, the correlation of leg length differences and the resulting pelvic obliquity on the growing spine as a function of pelvic width, or the accuracy of radiation-free measurements of the body surface for outpatient follow-up assessments of patients with spinal deformities.
Assuring Safety in the Treatment of Chronic Rheumatic Diseases

Paediatric chronic rheumatic diseases (pCRD) are caused by immune system disorders, leading to chronic systemic inflammation. The introduction of biologic medication has revolutionized the outcome of CRD, with achievement of inactive disease becoming the main goal of treatment.

All pCRD fulfill the rare disease criteria with a frequency of less than 1/2000. Therefore, the safety of biologic medication has often been investigated in only small paediatric studies. Therefore, the Juvenile Inflammatory Rheumatism Cohort was founded as a European register, currently including more than 4500 patients. One of the main goals is the investigation of phase IV medication safety signals. Dr Woerner is a member of the steering and scientific committees of this register. Further, he is principal investigator of the JIR module vaccination, which studies the safety of vaccinations in conditions of dysimmunity.

Individual, personalized dosage of biologics that may allow less side effects, while preserving efficacy, is the aim of a project together with Prof Marc Pfister, Paediatric Pharmacology at UKBB. In this study, investigation of blood levels of biologics at different time points in pCRD allows for the establishment of a pharmacokinetic model to optimize further drug dosing in an individual patient. This project follows the Individualized Medicine concept, formulated by the Swiss Federal Office of Public Health.

Further current topics of research of the team of Dr Woerner are projects addressing the transition from children with pCRD into adulthood, and studies on primary chronic pain in children in Switzerland.

Andreas Wörner, MD
Head of Paediatric Rheumatology

Group members at the UKBB
- Andreas Woerner, MD, Head
- Tatjana Welzel, MD, Fellow
- Thomas Daikeler, MD
 Rheumatology USB
- Christiane Marquis, Nurse
- Mary Daly, Transition Clinic Nurse
The current research activity of Prof. Frey’s group focuses around the ongoing BILD cohort study research, funded by the Swiss National Science Foundation. The following project, “Impact of Air Pollution on Profibrotic and Autophagy Related Mechanisms Involved in the Development of the Respiratory System in Infants” began in 2018.

This project is a direct continuation of a series of projects based on the on-going prospective birth cohort, BILD, which investigates the impact of environmental factors on lung growth and development, and subsequent consequences for later respiratory morbidity in early childhood.

There is increasing evidence from several birth cohort studies, including the BILD cohort, that air pollution exposure in early childhood has an impact on respiratory morbidity. Evidence from countries with high air pollution levels has shown that exposure to both particulate matter and NO₂ is associated with impaired lung growth and asthma. Previously, we found that low-level air pollution exposure in Switzerland was associated with respiratory symptoms in infancy. However, we did not find an effect on subsequent impaired lung function at school age. Nevertheless, even low-level air pollution exposure during pregnancy showed an effect on infant lung function shortly after birth. We thus hypothesize that, during this vulnerable pre-, perinatal and infancy phase, oxidative stress responses even at a low level might impair lung growth. There are multiple biological mechanisms involved.

Autophagy is an evolutionary, conserved major homeostatic mechanism to eliminate damaged organelles. Without proper control, autophagy contributes to various disorders including autoimmune and inflammatory diseases. Autophagy has recently been described as a novel mechanism in asthma, allergy, immune function, inflammation and anti-viral immunity. Autophagy related genes have been associated with asthma and impaired airway function in adults.

Current study hypothesis: TGFβ stimulation and autophagy related biomarkers have never been investigated in relation to lung and immune development in early infancy. Based on our RNF145 finding, we hypothesize that TGFβ stimulation and autophagy related mechanisms in response to environmental pollution (particulate matter, NO₂, oxidative stress) may be involved in early lung function development, may modify airway microbiome, and may contribute to subsequent persistent respiratory morbidity or asthma.
Did you know that every time you exhale you are releasing thousands of molecules into the ambient air? Breath is a diagnostically underexploited bodily fluid, which contains valuable bio-chemical information about health status. For example, the sense of smell was used by clinicians in ancient Greece and China to retrieve (qualitative) information about their patients. However, nowadays very few diagnostic tests rely on exhaled air. Our mission is to reverse this situation by uncapping the potential that breath analysis holds as a non-invasive method to assist in clinical decision making. To do this, we use modern analytical platforms combined with sophisticated computational tools. In particular, we use modified mass spectrometers, which have been designed to sense exhaled molecules at minute concentrations. Since the analysis requires no sample-preparation or manipulation, the diagnostic result can be obtained nearly in real-time. This technology is especially well suited for children due to its non-invasive nature.

Our breath analysis lab is located at the University Children’s Hospital Basel (UKBB), which provides us with the unique advantage of having direct access to well characterized patients. Our state-of-the art mass spectrometric analytical platform for real-time analysis of exhaled breath consists of an efficient numerically-optimized Secondary Electrospray Ionization source coupled with a high resolution mass spectrometer. In addition, the lab is equipped with an Ultra High Pressure Liquid Chromatography system, which, coupled with the mass spectrometer, is dedicated for metabolite identification. Bio-informatic tools developed in our lab unravel biochemical information encoded in the mass spectral fingerprints of our patients. Ultimately, we aim to improve diagnosis for certain diseases, to better phenotype complex pathophysiological processes, as well as to personalize therapy. The above mentioned research activities are currently being funded by the Swiss National Science Foundation, including a prestigious Eccellenza grant (1.5 Mio CHF for the coming five years).

- Exhaled breath analysis
- Novel diagnostics
- Therapeutic monitoring

Prof. Pablo Sinues, PhD
Research Group Leader

Group Members at the UKBB
- Dr. Kapil Dev Singh, Senior scientist
- Georgi Tancev, PhD student
- Amelia Imolesi, study nurse

Translational Medicine Breath Research
During 2017, we were able to conclude our research project devoted to data-driven disease phenotyping in asthma; that is, the development of a data-driven computational methodology designed to identify different types of asthmatic patients according to the fluctuation patterns in their lung function. This research effort concluded in the following publication: Delgado-Eckert, E. et al. Functional phenotypes determined by fluctuation-based clustering of lung function measurements in healthy and asthmatic cohort participants. Thorax 2018; 73:107–115.

In 2018, we also finished our project related to the study of the prognostic value of respiratory symptoms scores in infants. Our findings suggest that quantitatively characterized patterns of symptom deterioration and recovery during infancy are associated with asthma at school age. Our results were recently published: Usemann, J. et al. Dynamics of respiratory symptoms during infancy and associations with wheezing at school age. ERJ Open Research Oct 2018, 4 (4) 00037-2018; DOI: 10.1183/23120541.00037-2018

A new project was started in 2018 in collaboration with scientists at the Academic Medical Centre at University of Amsterdam (The Netherlands). The aim of this study is to use longitudinal respiratory, inflammatory, and immunological biomarker data (i.e. time series) in order to characterize and compare healthy and asthmatic cohort participants before and after a deliberate infection with a rhinovirus. Our preliminary results provide evidence for a loss of adaptive capacity of the human respiratory system due to asthma, resulting in an impaired ability to cope with external perturbations in asthmatic patients.

Comparison of respiratory biomarker time series indicates that in healthy participants the individual pre- and post-viral-challenge states are relatively more similar to each other than to other participants’ contrastingly, the post-viral-challenge state of an asthmatic participant resembles more other rhinovirus-infected asthmatics than the participant’s own pre-viral-challenge state, revealing loss of adaptive capacity.
Our main area of research is in the field of **pertussis**, specifically its epidemiology, burden of disease, and prevention by vaccines. This research is done in collaboration with national (Swiss Public Health Office and Swiss Pediatric Surveillance Unit) and international collaborators (Petrovic et al 2017, Martinon-Torres et al 2018, Son et al 2018, Hellenbrand et al 2018, PERISCOPE Consortium 2018, Forsyth et al 2018).

Our second area of research deals with the epidemiology, burden of disease and vaccine prevention of **varicella** (Riera-Montes et al 2017; Bollaerts et al 2017).

We are also actively involved in the Swiss **Paediatric Sepsis Study (SPSS)**, a prospective study performed between 2011 and 2015 which has revealed new insights in the clinical and epidemiologic features of sepsis in children and is still in the phase of ongoing analyses and publications (Agyeman et al 2017, Giannoni et al 2018, Dierig et al 2018, Asner et al 2019).

Finally, acceptance of recommended vaccines or – its opposite – **vaccine hesitancy** (recently included in the top 10 threats for global health by WHO) has been an area of increasing research by our group, including both healthcare workers and the public (Schuler et al 2017, Storr et al 2018, Erb et al 2019).

Prof. Ulrich Heininger, MD
Research Group Leader

Group Members at the UKBB
- Ines Mack, MD
- Mirjam Erb, MD
- Nora Manz, MD
- Marianne Schuler, MD
In 2018, the focus was on immunization in pregnancy.

The Global Alignment of Immunization Safety Assessment in Pregnancy (GAIA), funded by a research contract with the Bill & Melinda Gates Foundation (BMGF), was completed at the end of December 2018 (www.gaia-consortium.net). This Brighton Collaboration Foundation project aimed to improve data generated for strengthening programs of immunization in pregnancy by harmonizing maternal, pregnancy, fetal, and neonatal health outcome assessment with specific focus on Low and Middle Income Countries (LMIC), where perinatal and infant mortality is high. This internationally collaborative project provided over 2 dozen case definitions of adverse events following immunization, guidelines for data collection, an ontology of terms harmonized and mapped with international disease coding terminologies, case based causality assessment, Case Report Form (CRF) templates, an obstetric risk assessment tool (ORAT), customized Medical Dictionary for Regulatory Activities (MedDRA) queries, and mappings of case definitions to International Classification of Diseases ICD 10 and 11 in collaboration with WHO. All case definitions are being published and translated to the “ABC tool” as well as in the “library” so that they can be accessed via the virtual institute ACADEMY. Evaluation studies were conducted to test the feasibility and usefulness of the standards and tools developed. All outputs are published in three special issues of the Journal Vaccine.

Vaccination in pregnancy – Program Epidemiology (VIP-PREP) was the second focus project funded by Pfizer, Inc US. Group B Streptococcus (GBS) capsular polysaccharide conjugate vaccines are currently in development for use in pregnant women to primarily prevent maternal and neonatal sepsis and death. This research collaboration is to assess the Levels of Capsular Polysaccharide Antibodies in Cord Blood and the Association with Group B Streptococcal Disease by leveraging the umbilical cord serum biobank and clinical data available in the Basel Birth Cohort to meet this need. In 2018, we identified and extracted clinical data of cases and controls. We also matched corresponding umbilical cord sera. 2019 will be time for analysis, interpretation and publication.
Main research focus of the paediatric mycobacterial research group:
- to improve the diagnosis of tuberculosis in children
- to expand knowledge on all aspects of epidemiology and prevention of childhood tuberculosis
- to explore the use of cytokines as biomarkers for diagnosis and prognosis of diseases in childhood

The ongoing research projects in 2017/2018 were:
- Prospective multicentre Swiss Study evaluating novel immuno-diagnostic tests for childhood tuberculosis (CITRUS study).
- Evaluation of novel immunodiagnostic tests for tuberculosis infection and disease in an adult HIV cohort in Switzerland (NOVDA study).
- A prospective national study on clinical aspects, diagnosis and treatment of childhood tuberculosis with the Swiss Paediatric Surveillance Unit (SPSU).
- A retrospective study on screening of migrant children for tuberculosis in school-age children in the City of Basel for 10 years.

Main research focus of the migrant health research group:
- to define the epidemiology of asylum-seeking children cared for at the UKBB
- to expand knowledge on all aspects of diseases and disease patterns specific to asylum-seeking and refugee children including communicable and non-communicable diseases
- to summarize and review non-medical challenges in the care of asylum-seeking children

The ongoing research projects in 2017/2018 were:
- A retrospective analysis comparing asylum-seeking and non-asylum seeking children cared for at the UKBB in 2016 and 2017
- A qualitative study investigating the perspective of asylum-seeking caregivers on the quality of care provided
Paediatric Diabetology

- New technologies in diabetes
- Hypoglycemia
- Heart rate variability
- Diabetic ketoacidosis
- Life quality

The focus lies on clinical application of new diabetes technologies and the quality of metabolic control. Furthermore hypoglycemia and ketoacidosis as the most harmful events in diabetes are under investigation.

Diabetic ketoacidosis (Co.Diab-Study): This prospective observational study lead by G. Szinnai and S. Beglinger describes the dynamics of water regulatory hormones at diagnosis and during 48 hrs of rehydration and insulin therapy. In collaboration with Dr. MA Burckhardt in Perth all patients could be recruited and the analysis is underway. Early detection of overhydration should minimize ketoacidosis associated cerebral brain edema. For details see text G. Szinnai.

Hypoglycemia-arrhythmia study (in collaboration with B. Donner): In a previous study (Diabetes Care 2016) S. Bachmann described frequent and often prolonged nocturnal hypoglycemia in diabetic children. Such episodes are mostly asymptomatic and can be fatal in rare cases (dead in bed syndrome). The aim is to determine heart rate variability (HRV) and thereby autonomic cardiac function, as well as changes in heart rate repolarization (Qtc) during episodes of nocturnal hypoglycemia. First results reveal changes in HRV starting already 15 min before hypoglycemia. HRV reactions occur and therefore may be useful for hypoglycemia prediction algorithms in the future. Preliminary results were published in Diabetes Technology and Therapeutics https://doi.org/10.1089/dia.2019.2525.abstracts

Swiss Cohort of persons with disorders of sex development (local lead M. Hess): The objectives are to set up a Swiss DSD cohort of subjects born in CH and diagnosed with DSD according to the Chicago consensus guidelines. The prevalence, the spectrum of diagnoses and clinical presentations are described, aiming to optimize treatment and follow up. The longterm outcome on effectiveness of treatments, gender allocation at different time points, general health problems, such as growth restriction and fertility are assessed. Objectives for centers of excellence for DSD care will be defined.

DPV with local lead M. Hess): Large Database including anonymous patient data of > 400 diabetes centers in Europe. Ongoing study with UKBB co-authorship concerning metabolic control before and after insulin pump therapy.

Prof. Urs Zumsteg, MD
Research Group Leader

Group Members at the UKBB
- PhD Dr. Gabor Szinnai, MD
- Dr. Sara Bachmann, MD
- Dr. Melanie Hess, MD
- Dr. Svetlana Beglinger, MD
Three projects summarize our key activities in endocrine research:

ThyGEN study: Congenital hypothyroidism (CH) is the most frequent congenital endocrine disease. Next generation sequencing (NGS) is a tool for parallel sequencing of a large number of genes. This multicenter study at UKBB/USB Medical Genetics and in Paris, Berlin, Amsterdam and Montreal integrates NGS analysis as a diagnostic tool in CH-patients. Expected results cover three areas: 1) systematic description of molecular genetics, 2) impact of genetic results on counseling, 3) evaluation, in which diagnostic algorithm of CH routine use of NGS might be cost-effective.

CoDIAB Study: Copeptin in children with type 1 diabetes and ketoacidosis: Osmolality is the key stimulus for AVP/copeptin secretion. Physical stress can overrule osmolality regulated copeptin release and cause high copeptin levels. Diabetic ketoacidosis (DKA) is a frequent potentially life-threatening hyperosmolal disease state in type 1 diabetes. This observational study of children with DKA at UKBB and in Perth described copeptin dynamics during DKA therapy. We observed rapid decline of highly elevated copeptin levels within 12 hours after start of DKA therapy providing first normative data for physiological copeptin dynamics during DKA therapy that could guide water replacement in the future.

ThyMOD Study: Personalized dosing for thyroid diseases: Thyroid hormones are essential for normal brain development, and for normal cognitive functions. Treatment of thyroid diseases is difficult. To mitigate the risk of negative neurological and developmental outcome, it is essential to establish an optimal, personalized dosing that is continuously fine-tuned in neonates, infants and children with hyper- or hypothyroidism. The aim of this collaborative research project with Paediatric Pharmacology at UKBB, and Department of Mathematics, University Konstanz is to develop mathematical population pharmacokinetic-pharmacodynamic (PKPD) models that are able to describe and predict individual thyroid disease progression during treatment with thyroid hormone replacement therapy or anti-thyroid drugs based on routine clinical and laboratory data.
We study the interplay of movement, inflammatory activity and psyche: projects are performed in collaboration with the Institute of Sports and Sports Science and the University Psychiatric Clinics Basel. An ongoing clinical study is the comparison of the therapeutic effect of acupressure therapy and iberogast® (STW-5) in children with functional nausea – a randomized clinical trial with sham-conditions – work in progress. As part of the Swiss IBD Cohort study, the following papers were published in 2018: The Relevance of Vitamin and Iron Deficiency in Patients with Inflammatory Bowel Diseases in Patients of the Swiss IBD Cohort. Madanchi M, Fagagnini S, Fournier N, et al. Swiss IBD Cohort Study Group. Inflamm Bowel Dis. 2018 Jul 12;24(8):1768–1779.
The paediatric cardiology research group focuses on clinical studies identifying patients at risk for cardiac sequelae.

Long-term cardiopulmonary function in preterm born children.

In this project, we apply recently developed tools in three dimensional real-time echocardiography in combination with cardiopulmonary exercise testing for functional analysis of a cohort of formerly preterm children at school age (followed by Prof. S. Lemola, Faculty of Psychology of the University of Basel).

In close cooperation with PD Dr. Daniel Trachsel, paediatric pneumology, this cohort will be compared with an age-matched control with respect to parameters reflecting cardiopulmonary function and hemodynamics. These data could contribute to the detection of patients at risk for developing significant pulmonary hypertension or ventricular dysfunction.

Nocturnal hypoglycemia in diabetic children: influence on cardiac repolarization and autonomic heart rate regulation.

This prospective study is a close collaboration between Dr. Sara Bachmann and Prof. Dr. Urs Zumsteg, paediatric endocrinologists at UKBB to investigate the influence of nocturnal hypoglycemia on cardiac repolarization and autonomic heart rate regulation in children with type 1 diabetes mellitus. The combination of continuous nocturnal glucose measurements and ECG analysis enables us to study changes in the duration of repolarization and parameters of heart rate variability related to hypoglycemia.

Initial data show alterations in heart rate variability and QT duration in diabetic children with nocturnal hypoglycemia.

This study could contribute to the identification of increased risk for children with diabetes mellitus for sudden cardiac death during the night, probably triggered by arrhythmia (so called “dead in bed phenomenon”). In addition, the analysis of the autonomic regulation of heart rate variability in relation to glucose levels could help in the development of algorithms for early detection of hypoglycemia and could, therefore, further improve metabolic control.
The aims of our group are to better understand and support the rapidly growing respiratory system of neonates along with systematically sum-
marising evidence in the field to provide up-to-date clinical care and help guide the direction of future research.

Prognostic value of heart rate variability in preterm infants
We finalised our SNSF-funded project on the predictive value of baseline heart rate variability on cardiorespiratory stability required for discharge from the neonatal intensive care unit. We found that adding baseline sample entropy to clinical parameters improves prediction of cardiorespiratory stability of preterm infants. Four publications from this project have been published in respected peer-reviewed journals. Based on those findings, we initiated a new SNF project assessing the predictive value of sample entropy on hypoxaemic events in preterm infants routinely immunised in the hospital. We aim to examine whether sample entropy, a measure of complexity in a time series of heart beats, helps clinicians to pre-emptively assess the risk of hypoxaemic events after immunisation. Recruitment for this study has started in November 2018 and is progressing very well due to excellent efforts of the team.

Assessing lung mechanics in preterm infants by non-invasive forced oscillation measurements
We recently finalised this joint collaboration project with the biomedical engineering group of Prof Raffaele Dellaca (Politecnico di Milano, Milano, Italy) and Acutronic Medical Systems AG (Hirzel, Switzerland). The main findings are that forced oscillation measurements in preterm infants on continuous airway pressure support are safe and help to predict the duration of respiratory support in the neonatal intensive care unit.

Cochrane Systematic Reviews
These reviews are considered the reference standard for independent evaluation of interventions in health care. We added a review on beta-blockers for prevention of retinopathy of prematurity to the Cochrane Library and are currently updating our review on pentoxifylline for prevention of bronchopulmonary dysplasia.
The process of vaginal birth prepares the fetus for the extra-uterine environment; it confers respiratory, cardiovascular and homeostatic advantages to the newborn infant, and is considered to play a critical role in breastfeeding and infant-mother bonding. The goal of our research group is to better understand this process with a particular view on neuronal integrity and neurodevelopment, the effect of caesarean section on the infant’s outcome and to examine therapeutic strategies against transition failure, including hypoxia-ischemia and brain hemorrhage.

In an international multimodal randomized controlled trial, entitled EpoRepair and funded by the Swiss National Science Foundation (SNSF), we test whether high-dose erythropoietin improves neurological outcome of preterm infants suffering from severe brain damage (www.eporepair.ch). Recruitment and study treatment were completed in 2018, assessment of brain imaging and neurodevelopmental outcome are ongoing. In a second multicenter randomized controlled trial, entitled Lacarus and funded by the Family Larsson-Rosenquist Foundation (FLRF), we test whether the induction of mild uterine contractions prior to primary caesarean section may reduce neonatal respiratory morbidity and increase breastfeeding and infant-mother bonding rates.

Accompanying observational research aims to develop diagnostic and predictive measures for the early identification of newborn infants at risk for transition failure, e.g. postnatal dehydration and neonatal jaundice in a collaborative effort with the Department of Paediatric Pharmacology and Pharmacometrics, UKBB, and the Department of Mathematics and Computer Science, University of Basel.

Severe transition failure may result in hypoxic-ischemic encephalopathy, for which therapeutic hypothermia is successfully applied but the underlying molecular mechanisms of cold protection are incompletely understood. Here, our basic research focuses on a very promising target protein, RBM3, which we study in-vitro and in-vivo in close cooperation with the Department of Neurosurgery, University Hospital of Basel.
Paediatric Neurology and Developmental Medicine

- Development
- Cognition
- Attention
- Epilepsy
- Sleep

The main topics of our research group include development, cognition, attention, epilepsy, sleep and autism.

P. Weber and his co-worker A. Depoorter are currently working on prediction of the outcome of preterm babies with evoked potentials. A. Datta and his co-workers’ (N. Oser, M. Hubacher and A. Nageleisen-Weiss) main interest is epilepsy and sleep: Network connectivity in epilepsy with centro-temporal spikes (BECTS), the role of cerebellum in BECTS, longitudinal neuropsychological profiles, functional MRI and sleep analysis for regenerative processes in BECTS are ongoing projects. A. Datta has a collaboration for chronobiological sleep studies in preterm babies with the department of clinical pharmacology (M. Pfister and J.v.d. Anker, UKBB) and neonatology (K. Jost and S. Schulzke) and for antiepileptic drug level analysis in breath with the Botnar Foundation Professorship (P. Sinues, UKBB). Further, collaborations in national and international studies are in progress.

Autism and attention deficit disorders are the particular sphere of interest of M. Brotzmann and what he is involved with in different studies in collaboration with the Faculty of Psychology of the University of Basel.

The Swiss register for children with cerebral palsy is S. Jünemann’s main topic in collaboration of other Swiss centres for paediatric neurology as well as orthopedics.

Prof. Peter Weber, MD
Research Group Leader

Group Members at the UKBB
- PD Alexandre Datta, MD
- Mark Brotzmann, MD
- Patricia Dill, MD
- Stephanie Jünemann, MD
- Annette Nageleisen-Weiss, MSc
- Antoinette Depoorter, MD
- Nadine Oser, MD
- Martina Hubacher, MD
Our main scientific activities are clinical studies aimed at the delay of disease progression in neuromuscular diseases. Currently, we investigate whether tamoxifen has a positive impact on the course of disease symptoms in DMD patients. We coordinate a multicenter 48 week double-blind, placebo-controlled randomized clinical parallel trial (RCT) using a 1:1 design with a total number of 80 ambulant (6.5–12 year old) DMD patients. This trial is funded by ERA-NET 2016, the Swiss National Science Foundation, and various patient organisations of the UK, NL and Monaco (Duchenne UK, Duchenne Parent Project NL and Association Monégasque Contre les Myopathies). For more information, please refer to www.tamdmd.ch.

Additionally, we perform a single center double-blind, placebo-controlled randomized clinical crossover trial (RCT) using a 1:1 design with a total number of 35 patients to investigate the efficacy of ketone bodies to prevent migraine attacks. This trial is funded by the Swiss National Science Foundation.

Prof. Dirk Fischer, MD
Research Group Leader

Group Members at the UKBB
- PD Andrea Klein, MD
- Patricia Hafner, MD
- Sara Nagy, MD
- Vanya Gocheva, PhD student
- Niveditha Putananickal, PhD student
- Daniela Rubino-Nacht, Study management and coordination
- Caroline Baya, Study management and coordination
- Karin Wild, study nurse
Respiratory complications remain the leading cause of morbidity in children undergoing anesthesia or sedation. Our group’s longstanding record of research activities exploring effects of anesthetic drugs, airway instrumentation and respiratory monitoring in these children has been further extended. Especially in infants and young children the great vulnerability of the airway mandates meticulous and precise management. Main research activities were centered on the development of advanced respiratory monitoring tools.

Capnography is recommended as the gold standard for respiratory monitoring during sedation. However, since signal disturbances are frequently encountered with currently used tools, especially in young children, a modified oropharyngeal airway was developed. In an artificial model mimicking a breathing 6-month-old infant, capnography signals obtained via the new device were compared with those obtained via the currently used standard CO₂/O₂ nasal cannula. The study revealed that the tracheal to device CO₂ difference was significantly smaller when using a modified CO₂/O₂ oropharyngeal airway. Based on these promising results a modified CO₂/O₂ oropharyngeal airway was designed and developed in collaboration with FHNW Life sciences Muttenz. Swissmedic approval was accomplished and a clinical evaluation is ready to start.

Reliable and precise measurement of airway pressure is a long held demand since pressure related tissue damage is a risk inherent with various medical treatments. In particular mechanical ventilation may induce pressure related lung damage. Therefore, it is mandatory to control the applied pressure in the airway in order to guide the ventilation modalities. At present, pressure measurement is simply located in the ventilator, which has considerable limitations regarding its accuracy. A sensor based pressure measurement at the tip of an endotracheal tube is expected to allow measurements with higher accuracy. An ultra-thin, <0.2 mm thick, printed pressure sensor was developed in collaboration with CSEM (patent approved). The printed sensor is fabricated solely with high-throughput compatible technologies and may be produced at low costs. In an artificial lung and trachea model the new sensor (mounted on an endotracheal tube) was examined against a reference sensor. These tests revealed that the various modes of ventilation could be recorded accurately with the printed sensor. Furthermore, the amplitude of the sensor is stable over the full measurement time of 10h. Further work will include device improvements (printed shielding for the sensor and faster stabilization) and extensive in-vitro and in-vivo testing.
Prof. Dr. med. Johannes van den Anker and Prof. Dr. med. Marc Pfister direct Paediatric Pharmacology at UKBB, the national centre for Paediatric Pharmacology and Pharmacometrics (SwissPedPha) and the SwissPedNet Hub Basel. The primary focus of this centre is to perform clinical and translational research in the areas of developmental pharmacology, pharmacometrics and systems pharmacology (computer modeling and simulation), pharmacogenetics and pharmacoepidemiology. We train the next generation of clinical scientists, pharmacists, clinicians, pharmacologists and pharmacometricians.

We build pharmacometric models and decision support tools to optimize and personalize treatments in children. As an example, we developed an innovative algorithm to predict hyperbilirubinemia and phototherapy (European patent 171941602-1111).

We introduced SOPs and QC processes in the SwissPed Hub in Basel (Ambulantes Studienzentrum ASZ) and contributed to numerous clinical studies in children. We also manage the ASZ that you can find on page 10 of this report. In the national SwissPedDose initiative, which is funded by the federal office of public health (BAG), we made scientific contributions to harmonize and optimize dosing of drugs such as amoxicillin, gentamicin, vancomycin, and metamizole.

We also received several grants including (i) a SNF grant for the “KIDS-STEP” investigating adjunct corticosteroid therapy in hospitalized children with community acquired Pneumonia (CAP), (ii) a grant from the ETH foundation to develop a computer model that accounts for physical activity to personalize insulin treatment in children with Type-1 Diabetes mellitus (cooperation with ETH Basel), and (iii) together with DKF, we are part of a SNF grant to develop and implement a harmonized nationwide interactive electronic general consent process.

Prof. Johannes van den Anker, MD, PhD (Paediatric Pharmacology); Prof. Marc Pfister, MD (Pharmacometrics and Systems Pharmacology)

Group Members at the UKBB
- Andrew Atkinson, PhD
- Jantine Brussee, PhD
- André Dallmann (until early 2018), PhD
- Aline Fuchs (until early 2018), PhD
- Verena Gotta, PhD, research lead
- Gilbert Koch, PD, research lead
- Stephanie Leroux, MD
- Tatjana Welzel, MD
- Ricarda Foulk, administrative assistant
- Sarah Koechlin, project manager
- Tamara van Donge, PhD student
- Natalie Schoenfeld, MD student
- Carole Borter, master’s student
- Ly Wen Dieu, master’s student
- Patrick Fankhauser, master’s student
In 2018, main activities of the group focused on the clinical part of the SURfit study, a randomized interventional study in adult childhood cancer survivors. Intervention consisted of increasing physical activity at least 3h/week and reducing screentime by 25% for 12 months. The type of physical activity was left open to participants, who had to record it using a web-based logbook. Probands in the control group should not change anything in their usual level of physical activity. We randomized 150 probands in the 2 groups (75 probands per group).

Main outcomes of interest were:
1) composite cardio-vascular risk score (waist circumference, BMI, blood pressure, glucose, HDL, triglycerides)
2) bone health, measured by both bone mineral density (Dexa-Scan) and architecture (HR-pQCT)
3) quality of life and fatigue, assessed by standardized questionnaires

Probands were assessed at baseline and after 3, 6 and 12 months of intervention. First results of the baseline investigations are now available and have been recently published (see pt.5). Briefly, they show that survivors are indeed a population at-risk for cardiovascular disease, being clearly more overweight or obese than the general population, and more often suffering from arterial hypertension, high blood lipids, reduced glucose tolerance (all features of the metabolic syndrome) and reduced bone density, putting them at risk of fractures. Results from the randomized intervention are expected for 2019 and will be published in different medical journals.
Immune Thrombocytopenia Research

The projects include those of the Intercontinental Cooperative ITP Study Group (ICIS, www.itpbasel.ch) and of the department oncology/hematology at the UKBB. ICIS was founded in 1997 and is leading 4 registries with the aim of establishing a worldwide network of scientists and clinicians involved in immune thrombocytopenia (ITP). Currently, the Pediatric and Adult Registry on ITP (PARC-ITP) and the Splenectomy Registry are open for patient recruitment by internet access.

In 2018, a comparison of the natural history and treatment of two years of children and adults with ITP was published (Schifferli A et al. 2018a). Several unexpected similarities among children and adults were found, such as the potential of remission 1 and 2 years after the initial diagnosis, but also unexpected differences, such as the percentage of patients without bleeding; interestingly with more adults in the group of non-bleeding patients. An analysis with paediatric data extracted from ICIS Registry II focused on predictors of outcome: Younger age, bleeding severity at diagnosis, and initial treatment with a combination of corticosteroids and IVIG are associated with remission of ITP at 12 months (Bennett CM et al. 2018).

In an ongoing analysis, the rarely reported secondary ITP is described in 99 of 3,581 children (2.8%) (Schifferli A et al. 2018b). Infectious and autoimmune diseases were main causes of ITP. Our group is involved in national and international guideline panels, in the development of a new edition of German, Austrian and Swiss management recommendations (Matzdorff A et al. 2018), in the description of diagnosis and treatment of paediatric ITP (Kühne T. 2018a and b) and in the development and performance of registries (Kühne T. 2018c).

The study of the immune system is a further activity of the group. Dr. A. Schifferli coordinated a clinical multi-center open-label trial in Switzerland with the aim to investigate the immunological potential of romiplostim, a thrombopoietin-receptor agonist, based on the observation that certain patients exhibited an unexpected, sustained response after termination of this drug (Schifferli A and Kühne T. 2016). The recruitment of patients is now completed (February 2019).

Prof. Thomas Kühne, MD
Research Group Leader

Group Members at the UKBB
– Monika Imbach, study nurse
– Caroline Martin Asal, study nurse
– Alexandra Schifferli, MD
– Verena Stahel, study nurse

– Platelets
– Thrombocytopenia
– Bleeding
– Registry
– Trial
Our research studies the molecular mechanisms of paediatric acute myeloid leukemia (AML). Hereby, we focus on AML driven by epigenetic regulators such as fusions of the mixed lineage leukemia (MLL) or the nucleopore 98 (NUP98) genes. As AML is rare and access to primary cells is limited, its biology is mostly studied in mice (Fig.1). We recently developed a model for acute leukemia driven by the MLL-ENL fusion. We found that in contrast to other MLL fusions, mostly hematopoietic stem and early progenitor cells are susceptible for transformation by MLL-ENL, suggesting a differential susceptibility for malignant transformation of the cells of the hematopoietic hierarchy (Stavropoulou et al., Hemasphere, 2018).

We also studied the transforming potential of the NUP98-NSD1 fusion, a molecular hallmark of paediatric AML patients with poor outcome, and the NUP98-MLL fusion, a rare but unusual lesion in myelodysplasia and AML. We found that expression of NUP98-MLL in mice, like in patients, led to MDS and AML expressing very low levels of the so-called HOX genes (submitted). The transforming potential of NUP98-NSD1 is a matter of ongoing discussion. Our findings suggest that NUP98-NSD1 is insufficient to transform hematopoietic cells, and as observed in the majority of the patients, depends on cooperation with other mutations. Interestingly, preliminary observations suggest a particular developmental window of opportunity to induce AML by NUP98-NSD1, which may explain why older children are mostly affected.

In collaboration with the group of Thomas Mercher (Paris) we developed a novel model of acute megakaryoblastic leukemia (AMKL), a rare but very aggressive form of AML, mostly affecting infants. For the first time, we were able to induce an AMKL phenotype in mice, and show that it most likely originates from hematopoietic stem cells during fetal development (submitted).
T cells are essential in establishing protective immunity, but can also cause harm should their activity be directed against an individual’s own tissues, a pathology referred to as autoimmunity. The T cells’ ability to distinguish between potentially injurious antigens of pathogens and malignancies (“non-self”) and the body’s own antigens (“Self”) is instructed during the cell’s intrathymic development and results from interactions with the stromal microenvironment (Figure). Thymic epithelial cells (TEC) constitute an essential component of this stroma whereby cortical (c) and medullary (m) TEC differ in their phenotype, gene expression and function. Our research focuses on a detailed understanding of TEC development and function. For this purpose, we have generated experimental models with specific gain or loss of gene functions which allow for the interrogation of exact genetic and epigenetic mechanisms important for thymus organogenesis and function. Differential DNA methylation, the expression of micro-RNA and posttranslational histone modifications constitute epigenetic mechanisms essential for TEC fate determination, maintenance and function. In parallel, we have investigated the identity of TEC stem/precursor cells and their intermediate stages in differentiation towards mature cTEC and mTEC. Using lineage fate mapping, we demonstrated that the postnatal medulla is expanded from individual progenitors with a cTEC-like phenotype which are located between the two anatomical compartments of cortex and medulla. Finally, we have also established that metabolism plays an important role in TEC biology as changes in mitochondrial energy production severely disturb TEC homeostasis, cellularity, phenotype and thymocyte selection at multiple maturational stages. Hence, our findings link metabolic changes in TEC to specific stages in T cell development.

- Thymus development
- Thymic epithelial cell
- T cell genetics
- Epigenetics
- Lineage fate

Cellular diversity of thymic stroma illustrated by 8 markers out of a total 24 used in CODEX, a novel multiparameter immunofluorescence analysis platform

Prof. Georg Holländer, MD
Research Group Leader

Group Members at the UKBB
- Thomas Barthlott, PhD
- Irene Calvo, PhD
- Ellie Christen, technician
- Martha Gaio, administrative assistant
- Katrin Hafen, technician
- Veysel Kaya, PhD student
- Lucas Musette, PhD student
- Hongying The, PhD
- Saulius Zuklys, PhD
Cells of the innate and adaptive immune system cooperate to achieve an equilibrium of immune responses that maintains tolerance to self-antigens (Ags), nutrients and commensal bacteria, but clears foreign Ags and eliminates tumor cells. T lymphocytes and their innate counterparts, the innate lymphoid cell (ILCs) are tightly regulated by a coordinated induction/repression of transcription factors. Moreover, tissue micro-environments contribute to the outcome of local immune responses such that immunopathology is avoided.

Transcriptional identity of innate lymphoid cells: ILC3s act as first-line responders to tissue injury, infection and inflammation. The identification of pathways controlling the identity of ILCs is crucial for a better understanding of how innate and adaptive immune responses are regulated across disparate organs. Small intestinal type 3 ILCs (ILC3s) prevent T cell responses to commensal Ags, whereas splenic ILC3s promote T cell responses to foreign Ags emphasizing their tissue-specific properties. Using various mouse models and in-depth single cell profiling of ILC3s we have comprehensively assessed the transcriptional signatures of ILC3s and its progenitors. Our results show that environmental signals, including the microbiota, adapt the transcriptional identity of ILC3 and modulate signalling pathways able to induce or limit Ag-specific CD4+ T-cell responses. In addition, we found key factors regulating pro-vs. anti-inflammatory cytokine responses of ILCs which are critical for the outcome of an immune response. Our data demonstrate a high responsiveness of ILCs to tissue-derived cytokines regulating their immune function in health and disease.

Anti-tumor responses of innate lymphoid cells: Type 1 ILCs (ILC1s) reside in the liver, and a large part of their function is attributed to the expression of TRAIL, a TNF superfamily member with a well-documented antitumor activity. We could show that TRAIL expression on mouse ILC1s is controlled by an activating receptor NKp46. In the absence of NKp46, ILC1s fail to express normal levels of TRAIL on the surface, which results in diminished cytotoxicity toward TRAIL receptor-positive targets. These findings provide the first evidence of a role of NKp46 in ILC1s that calibrates their antitumor response.
Our research group focuses on the interaction of enteric neuronal innervation with the mucosal immune system in paediatric patients with intestinal innervation disorders (Hirschsprung’s disease) and inflammatory bowel disease. Dysbiosis, bacterial overgrowth and changes in innate and adaptive effector immune cells are known to initiate colonic inflammation. Regulation of immune cells significantly contributes to mucosal homeostasis. While inhibitory cells maintain homeostasis and tolerance towards commensals, effector cells are indispensable for fighting and clearing pathogens. Recent findings suggest that enteric neurotransmitters fine-regulate microbial-immune cell crosstalk, bacterial recognition of phagocytes and subsequent T cell responses. We study the enteric innervation, characterize neurotransmitters and monitor phenotypical changes in mucosal innate and adaptive immune cells using immunofluorescence, flow cytometry and quantitative real time PCR. Combining cell sorting and immune cell based in vitro assays we focus on the underlying molecular mechanisms. Uncovering new interaction pathways between enteric neurons and immune cells will help to improve diagnosis of enterocolitis susceptible Hirschsprung’s patients and will improve therapeutic treatment of juvenile colitis patients.

Prof. Stefan Holland-Cunz, MD
Research Group Leader

Group Members at the UKBB
– Simone Keck, PhD
– Virginie Galati, technician
– Urs Kym, technician
– Isabelle Müller, master’s student
– Madlaina Helbling, master’s student

- Enterocolitis
- Neurodegeneration
- Mucosal neuro-immune mechanisms
- Hirschsprung’s disease
Neuroblastoma is the most common extracranial solid tumor in childhood. Despite multidisciplinary approaches, the prognosis of high-risk neuroblastoma with disseminated disease is still poor. Our research is focused on mechanisms of tumor progression and migration of neuroblastoma as well as the latter’s inhibition. Dysregulation of cell proliferation and structurally and functionally abnormal blood vessels within this highly malignant solid tumor often lead to severe hypoxia. Adaptation of cancer cells to the hypoxic microenvironment is characterized by genetic and adaptive mechanisms allowing the cells to survive. Our research is based on the hypothesis that the hypoxic microenvironment enables cancer cells to acquire enhanced invasive and metastatic properties, which lead to a highly aggressive tumor progression and poor prognosis. We could show that the enzyme carbonic anhydrase IX, which is regulated by hypoxia furthers tumor progression in the hypoxic tumor microenvironment and is a possible therapeutic target (J Enzyme Inhib Med Chem. 2018). Our work on neuroblastoma was supported by the Stiftung krebskranke Kinder - Regio basiliensis and the University of Basel and was awarded with the Jack Plasckes Award 2018. We are currently implementing novel patient-based in vitro approaches to rapidly compare established protocols with innovative therapeutics. This approach could further personalize neuroblastoma treatment and make it more effective for each patient.
SpineBot
The project “Intraoperative in vivo Assessment of Spinal Stiffness with a Programmable Robotic Device”, launched in cooperation with the Institute for Surgical Technology and Biomechanics (ISTB) at the University of Berne and was co-financed twice by the Swiss National Science Foundation, with further advanced thanks to a project-related grant for Dr. Daniel Studer as part of the University of Basel’s special programme for the promotion of young researchers. The targeted, in vivo collected biomechanical data are unique in this form and could make a lasting contribution to the goal of fusionless correction of spinal deformities by implementing them in finite element models and developing new implants and surgical techniques.

Health-related Quality of Life (HrQoL)
The project “Assessment of Health-related Quality of Life before and after spinal fusion surgery in adolescent patients with severe neuromuscular scoliosis” aims at objectifying changes of HrQoL of children and adolescents with neuromuscular scoliosis after spinal fusion surgery. Performing high-risk and cost-intensive surgical interventions in patients who are usually physically and mentally severely impaired is increasingly questioned due to pressure coming from rising costs in the healthcare system. Objective criteria, such as x-rays and functional scores are no longer sufficient to justify these interventions. The recording of HrQoL, with the help of PROMs (“patient reported outcome measures”), intends to address this problem.

Pelvic width
With the project “The correlation of leg-length-discrepancy and pelvic obliquity in relation to pelvic width and its influence on the growing spine in patients with and without lumbosacral malformations” we investigate the influence of pelvic growth on the child’s spine as a function of leg length differences and lumbosacral malformations. Part of the project will be carried out as a doctoral thesis.

Spinal Length
With the project “Traditional T1-S1 distance significantly underestimates the true 3-dimensional length of the spine” we investigate (within the context of a master’s thesis) the clinical application of a software to calculate the 3-dimensional length of the vertebral column based on conventional x-rays, developed in cooperation with the University of Bern.

Prof. Carol C. Hasler, MD
Research Group Leader

Group Members at the UKBB
– Daniel Studer, MD (Project Leader)
– Christoph Heidt, MD
– Jonas Blecher, MD student
– Thomas Angst master’s student
Bone Tumor and Limb Reconstruction

- Bone tumor
- Limb deformity
- Tumor diagnostics
- Patient-specific implants and guides
- Reconstruction

Research finished in 2018

1. Virtual periacetabular osteotomy and anatomical measurements – how far from a disaster.
 The goals of this study were to provide safer and anatomically optimal osteotomy distances. The paper has been published in Orthopaedic Surgery and obtained the Wissenschaftspreis der Vereinigung für Kinderorthopädie an der 32. Jahrestagung, 3. March 2018 in Dresden.

2. MCS110, an anti-CSF-a monoclonal antibody, for the treatment of pigmented villonodular synovitis – the clinic trial experience in Switzerland.
 At the begin of 2016 we started with a phase II randomized, double-blind, placebo-controlled study followed by open label dosing to assess safety, tolerability and effect on tumor size of MCS110 in patients with pigmented villonodular synovitis. In 2018, this study was finished, 4 patients were included and treatment was initially very successful, but we did have one relapse. One abstract has been finished.

Research project partly finished in 2018

1. Survivorship and clinical outcome of tumor prosthesis reconstruction in pelvic and extremities tumor patients.
 This is doctoral thesis work conducted by Mr. Chao Dong. The result has been presented in 78. Jahreskongress Swiss Orthopaedics, Montreux, 04.–06.06.2018. We plan to collect more prosthesis patients in cooperation with other tumor centers to publish 1 high quality article in 2020.

2. Percutaneous cyst aspiration with injection of two different bioresorbable bone cements in treatment of simple bone cyst.
 Results were presented in 78. Jahreskongress Swiss Orthopaedics, Montreux, 04.–06.06.2018. and also at the 37th EPOS Annual Meeting, Oslo, 11.–14.04.2018.
 The manuscript of this project is complete and will be submitted soon.

Ongoing research

1. Fitbone: Femur lengthening via a retrograde approach with the motorized intramedullary lengthening nail: “10-year-follow-up results”, which is doctoral thesis work conducted by Mr. Marc Schmidt. The Ethics Committee has already approved this study. This work will be finished by the end of 2019 and we will publish 1 article in 2020.

2. CPT: Allograft bypass/reconstruction Technique in CPT – a new modified technique. We will present the outcome in treating congenital pseudarthrosis of the tibia with allograft bypass or cases with allograft reconstruction. This work will be finished by the end of 2019 and we will publish 1 article in 2020.

Throughout all of 2017/2018, we completed 2 major research projects, published 3 articles as first or corresponding author, and published 3 articles as coauthor. More than 15 congress presentations were given.
We study the causal connections for understanding gait pathologies and treatment improvement:

The function of the rectus femoris muscle is unclear. We computed normal function using inverse dynamics and musculoskeletal modelling (Anybody) and the effect of force changes on the gait cycle. Less force resulted in initial toe contact, more force impeded foot clearance. These effects need to be respected in case of planning a muscle transfer. Achilles tendon lengthening is said to weaken the muscle. We showed in hemiplegic patients with cerebral palsy using musculoskeletal modelling (Anybody) that the energy of the soleus muscle improved and that of the gastrocnemii muscles remained unchanged.

Patients with cerebral palsy have difficulties to walk on uneven ground. We analysed the differences during gait comparing healthy individuals and patients with spastic hemiplegia walking on an uneven surface. The joint angles, centre of mass and muscle activity were the parameters of interest.

Botulinum toxin injection is a standard treatment for the correction of gait disorders in patients with cerebral palsy. It is unclear how much of the muscle gets affected and how the remaining part reacts. Muscle contraction can be assessed by functional MRI. In connection with force measurement muscle force can be estimated. Gait analysis with musculoskeletal modelling (Anybody) assesses muscle function during gait. MRI and gait analysis are carried out before, at 6, and 12 weeks after the application of botulinum toxin. The study has only just started.

Individual outcome prognosis after conservative and surgical treatment is of major interest. The simple computation of mechanics by modelling does not consider the reaction of the individual which influences the outcome. For this reason, we apply artificial intelligence (logistic regression, random forest, deep machine learning). The basis are all patients with cerebral palsy who were treated and had gait analysis. In a first step we analyse the effect of the treatment. Multilevel surgery showed improvement even after ten years in sagittal plane kinematics. Ankle foot orthoses are widely used for gait correction. They improve the gait parameters but do not reach symmetry as an indicator for improved stability.
Publications 2017/2018
Paediatrics

Peer reviewed article

Review

Schmidt M, André MC. From Bench to Bedside: Exploiting Memory NK Cell Responses to Leukemia. Accepted for Publication in Advances in Cell and Gene Therapy. 10/2018.

Editorial material

Other

Botnar Professorship – Translational Medicine Breath Research

Peer reviewed article

Computational Physiology and Biostatistics

Peer reviewed article

Paediatric Infectious Diseases and Vaccinology

Peer reviewed article

Research Report UKBB 2017 / 2018
Publications 2017/2018

AG Meningokokken B der Ständigen Impfkommission (STIKO): Aktualisierte Stellungnahme der STIKO am RKI zum Stand der Bewertung einer Impfung gegen Meningokokken der Serogruppe B (Stand 20.12.2017); Epid Bull 2018;3:35 (als Mitglied der AG).

Review

Letter/Book

Other

Vaccine Safety and Brighton Collaboration Foundation

Peer reviewed article

Review

Mycobacterial Research

Peer reviewed article

Review

Editorial material

Letter/Book

Other

Diabetology

Peer reviewed article

Review

Editorial material

Paediatric Endocrinology

Peer reviewed article

Letter/Book

Other
Gastroenterology & Nutrition

Peer reviewed article

Editorial material
Furlano RI. Paediatrie 5/18 “Fragwürdige Schönheitsideale”.

Letter/Book

Other
https://gesundheit-heute.ch/2017/05/06/vitamin-b12-mangel/

Cardiology

Peer reviewed article

Review

Neonatology
Neonatal Respiratory and Clinical Epidemiology Research

Peer reviewed article

Fetal and Neonatal Stress Research

Peer reviewed article

Review

Other

Neuropaediatrics

Neurology and Developmental Medicine

Peer reviewed article

Publications 2017/2018

Review

Other
Co-Herausgeberin und Co-Autorin bei:

Neuromuscular Research
Peer reviewed article

Review

Anesthetics Research
Peer reviewed article

Review

Editorial material

Letter/Book

Paediatric Pharmacology
Ped. Pharmacology and Pharmacometrics
Peer reviewed article

Ku L, Zimmerman K, Benjamin D, Clark R, Hornik C, Smith P; Best Pharmaceuticals for Children Act-Paediatric Trials Network

Esaiassen E, Fjalstad J, Juvet L, van den Anker J, Klingenberg C. Antibiotic exposure in neonates and early adverse outcomes – variability underscores the need for a better clinical study design. Minerva Pediatr 2017 Mar 3 [Epub ahead of print].

Ziesenitz V, Haefeli W, van den Anker J, Gorenflo M. No, we are not – we keep forgetting the right ventricle. Eur J Clin Pharmacol 2017 Oct 13 [Epub ahead of print].

Ziesenitz V, Hasfeli W, van den Anker J, Gorenflo M. No, we are not—we keep forgetting the right ventricle. Eur J Clin Pharmacol 2018;74(1):141–143.

Publications 2017/2018

Ziesenitz V, van den Anker J. Psychiatric disorder or adverse drug reaction? How CYP2D6 metabolizing activity can result in dextromethorphan intoxication. Klin Padiatr 2018 June 18 [Epub ahead of print].

Review

Letter/Book

Ziesenitz VC, Haefeli WE, van den Anker JN, Gorenflo M. No, we are not-we keep forgetting the right ventricle. Eur J Clin Pharmacol 2018 Jan;74(1):141–143. [PMID: 29030645].

Hematology/Oncology

Other

Publications 2017/2018

Immune Thrombocytopenia Research

Peer reviewed article

Review

Letter/Book

Other
Wendelspiess M., Schifferli A., Rudin C., Kaempfen S., Department of Neonatology (WM, KS), Department of Paediatric Nephrology (RC), Department of Oncology/Hematology (SA), University of Basel Children’s Hospital (UKBB), Basel, Switzerland. Classical presentation of a newborn infant with renal vein thrombosis. Neonet.ch, Case of the month December 2017.

Childhood Leukemia

Peer reviewed article

Reviews

Immunology

Paediatric Immunology

Peer reviewed article

Publications 2017/2018

Developmental Immunology

Peer reviewed article

Paediatric Surgery

Surgical Research

Peer reviewed article

Review

Letter/Book

Other

Pfeifle V. Necrotizing fasciitis due to minor lesions, Journal of Paediatric Surgery Case Reports, Vol. 25, 2017
Orthopedics/Neuroorthopedics
Computational Spine Biomechanics

Peer reviewed article

Review

Editorial material

Letter/Book

Bone Tumor and Limb Reconstruction

Peer reviewed article

Editorial material

Letter/Book

Other

Neuroorthopedics
Peer reviewed article

Camathias C, Speth BM, Rutz E. Der belastungsabhängige vordere Knieschmerz bei Jugendlichen. 28/1 I Paediatrica 2017.

Kläusler M, Rutz E. Evaluation and Conservative Management of Spinal Seformity in Patients with Cerebral Palsy: In „Scoliosis: Diagnosis, Classification and Management Options“; Ed. F. Canavese et al., NOVA 2018
Promotions and Honours
Habilitations

<table>
<thead>
<tr>
<th>Name</th>
<th>First name</th>
<th>Title</th>
<th>Supervisor</th>
<th>Research Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camathias</td>
<td>Carlo</td>
<td>Die Patellaluxation des kindlichen Kniegelenkes</td>
<td>Carol C. Hasler</td>
<td>Computational Spine Biomechanics</td>
</tr>
<tr>
<td>Datta</td>
<td>Alexandre</td>
<td>Brain plasticity in children with benign epilepsy with centro-temporal spikes</td>
<td>Peter Weber</td>
<td>Paediatric Neurology and Developmental Medicine Group</td>
</tr>
</tbody>
</table>

Dissertations

<table>
<thead>
<tr>
<th>Name</th>
<th>First name</th>
<th>Title</th>
<th>Supervisor</th>
<th>Research Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauwens</td>
<td>Jorgen</td>
<td>Impact of non-adherence to vaccination schedules</td>
<td>Jan Bonhoeffer</td>
<td>Vaccine Safety Research Group</td>
</tr>
<tr>
<td>Berchier</td>
<td>Christophe</td>
<td>Organisation et gestion de l’activité opératoire en hôpital pédiatrique: définition d’un modèle idéal de planification/ programmation et implémentation des mesures d’optimisation pour le service d’anesthésie et le bloc opératoire</td>
<td>Thomas Erb</td>
<td>Paediatric anesthesiology</td>
</tr>
<tr>
<td>Cremer</td>
<td>Martin</td>
<td>Immediate effects of phototherapy on sleep in very preterm neonates: an observational study</td>
<td>Alexandre Datta/ Peter Weber</td>
<td>Paediatric Neurology and Developmental Medicine Group</td>
</tr>
<tr>
<td>Depoorter</td>
<td>Antoinette</td>
<td>Neuronal biomarkers of cognitive development in preterm and term born infants: a multidimensional approach combining electrophysiology and peripheral blood biomarkers</td>
<td>Peter Weber</td>
<td>Paediatric Neurology and Developmental Medicine Group</td>
</tr>
<tr>
<td>Dong</td>
<td>Chao</td>
<td>Survivorship and clinical outcome of tumor prosthesis reconstruction in pelvic and extremities tumor patient</td>
<td>Andreas Krieg</td>
<td>Bone Tumor and Limb Reconstruction Group</td>
</tr>
<tr>
<td>Evers</td>
<td>Katrina</td>
<td>Arginine Vasopressin and Copeptin in Perinatology</td>
<td>Sven Wellmann</td>
<td>Fetal and Neonatal Stress Research</td>
</tr>
<tr>
<td>Früh</td>
<td>Julia</td>
<td>Predicting neurodevelopmental outcome in preterm born infants using auditory event-related potentials: A systematic review</td>
<td>Peter Weber</td>
<td>Paediatric Neurology and Developmental Medicine Group</td>
</tr>
<tr>
<td>Name</td>
<td>First name</td>
<td>Title</td>
<td>Supervisor</td>
<td>Research Group</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>--</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Hillenbrand</td>
<td>Anastasia</td>
<td>Impact of flash glucose monitoring on HbA1c in paediatric patients with type 1 diabetes</td>
<td>Gabor Szinnai</td>
<td>Paediatric Endocrinology</td>
</tr>
<tr>
<td>Meier-Girard</td>
<td>Delphine</td>
<td>The fluctuation behavior of heart and respiratory system signals as a quantitative tool for studying long-term environmental exposures and chronic diseases</td>
<td>Edgar Delgado-Eckert</td>
<td>Computational Physiology and Biostatistics</td>
</tr>
<tr>
<td>Müller</td>
<td>Isabelle</td>
<td>Influence of cholinergic signaling on anti-bacterial response of colonic epithelial cells</td>
<td>Stefan Holland-Cunz</td>
<td>Paediatric Surgery Research</td>
</tr>
<tr>
<td>Rost</td>
<td>Michael</td>
<td>The switch from curative to palliative care: Children’s and adolescent’s involvement in end-of-life decision making</td>
<td>Thomas Kühne</td>
<td>Immune Thrombocytopenia Research</td>
</tr>
<tr>
<td>Schuler</td>
<td>Marianne</td>
<td>Attitudes of Swiss Health Care Providers</td>
<td>Ulrich Heininger</td>
<td>Paediatric Infectious Diseases and Vaccinology</td>
</tr>
<tr>
<td>Sharan</td>
<td>Apoorva</td>
<td>Multi-centre Active AEFI Sentinel Surveillance Network (MAASS) in India</td>
<td>Jan Bonhoeffer</td>
<td>Vaccine Safety Research Group</td>
</tr>
<tr>
<td>Suter</td>
<td>Lilian</td>
<td>Transoesophageal swallow detection in preterm infants</td>
<td>Sven Schulzke</td>
<td>Neonatal Respiratory and Clinical Epidemiology Research Group</td>
</tr>
</tbody>
</table>
Master Thesis

<table>
<thead>
<tr>
<th>Name</th>
<th>First name</th>
<th>Title</th>
<th>Supervisor</th>
<th>Research Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arikci</td>
<td>Denis</td>
<td>Sleep and Quality of Life Assessment in Adolescents and Young Adults with remitted Benign Epilepsy with Centro-temporal Spikes</td>
<td>Peter Weber</td>
<td>Paediatric Neurology and Developmental Medicine Group</td>
</tr>
<tr>
<td>Auderset</td>
<td>Anne</td>
<td>Nocturnal hypoglycemia in diabetic children: Is Qtc prolonged compared to normoglycemia?</td>
<td>Urs Zumsteg</td>
<td>Paediatric Diabetology</td>
</tr>
<tr>
<td>Berni</td>
<td>Angela</td>
<td>Who where when why? Retrospective Analysis of reasons and frequency of hospitalization in children with Type 1 diabetes</td>
<td>Urs Zumsteg</td>
<td>Paediatric Diabetology</td>
</tr>
<tr>
<td>Binder</td>
<td>Roman</td>
<td>Methods for data extraction and processing of electronic health care data at the UKBB</td>
<td>Jan Bonhoeffer</td>
<td>Vaccine Safety Research Group</td>
</tr>
<tr>
<td>Bologna</td>
<td>Katja</td>
<td>Reduced Cardiorespiratory Fitness in Childhood Cancer Survivors</td>
<td>Nicolas von der Weid</td>
<td>Outcomes Research in Childhood Cancer</td>
</tr>
<tr>
<td>Borter</td>
<td>Carole</td>
<td>Population Pharmacokinetics of Intravenous metamizole in children less than 6 years old</td>
<td>Marc Pfister</td>
<td>Centre for Paediatric Pharmacology and Pharmacometrics (PedPP)</td>
</tr>
<tr>
<td>Bourquin</td>
<td>Luc</td>
<td>Immune metabolic characterization of type 3 innate lymphoid cells</td>
<td>Daniela Finke</td>
<td>Developmental Immunology</td>
</tr>
<tr>
<td>Brandenberger</td>
<td>Julia</td>
<td>The perspective of asylum-seeking caregivers on the quality of care provided by a Swiss paediatric Hospital – a qualitative study</td>
<td>Nicole Ritz</td>
<td>Paediatric Infectious Diseases and Vaccinology</td>
</tr>
<tr>
<td>Cuny</td>
<td>Pascale</td>
<td>Metabolische Kontrolle bei Kindern und Jugendlichen mit Diabetes mellitus: Prognostische Faktoren bei Diagnosestellung</td>
<td>Urs Zumsteg</td>
<td>Paediatric Diabetology</td>
</tr>
<tr>
<td>Fankhauser</td>
<td>Patrick</td>
<td>Retrospective quality control study to evaluate current amikacin dosing and therapeutic drug monitoring practices in preterm and term neonates</td>
<td>Johannes van den Anker</td>
<td>Centre for Paediatric Pharmacology and Pharmacometrics (PedPP)</td>
</tr>
<tr>
<td>Frey</td>
<td>Nadine</td>
<td>Metabolische Kontrolle pädiatrischer Patienten mit Diabetes mellitus Typ 1 vor und nach Umstellung auf eine Insulinpumpe</td>
<td>Urs Zumsteg</td>
<td>Paediatric Diabetology</td>
</tr>
<tr>
<td>Name</td>
<td>First name</td>
<td>Title</td>
<td>Supervisor</td>
<td>Research Group</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>--</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Geiger</td>
<td>Marc</td>
<td>Diagnosis of tuberculosis in children: Indeterminate interferon-gamma release assays – a systematic review and meta-analysis</td>
<td>Ulrich Heiniger/ Nicole Ritz</td>
<td>Paediatric Infectious Diseases and Vaccinology</td>
</tr>
<tr>
<td>Heiri</td>
<td>Andrea</td>
<td>Analysis of children with secondary immune thrombocytopenia (ITP): An observational study of children of the PARC-ITP Registry – On behalf of the Intercontinental Cooperative ITP Study Group (ICIS)</td>
<td>Thomas Kühne</td>
<td>Immune Thrombocytopenia Research</td>
</tr>
<tr>
<td>Heibling</td>
<td>Madlaina</td>
<td>Cytokine induced upregulation of neuronal receptors</td>
<td>Stefan Holland-Cunz</td>
<td>Paediatric Surgery Research</td>
</tr>
<tr>
<td>Hongying</td>
<td>Teh</td>
<td>Role of polycomb repressive complex 2 in thymic epithelial development and function</td>
<td>Georg Holländer</td>
<td>Paediatric Immunology</td>
</tr>
<tr>
<td>Hüsler</td>
<td>Dario</td>
<td>The role of presumptive drivers of an inducible MLL-AF9-mediated leukemia cell model</td>
<td>Jürg Schwaller</td>
<td>Childhood Leukemia</td>
</tr>
<tr>
<td>Kaiser</td>
<td>Ramona</td>
<td>4D Analysis of left ventricular function and rotational mechanics by speckle tracking – normal values and values under growth hormone therapy for the paediatric and adolescent population</td>
<td>Birgit Donner</td>
<td>Clinical Research in Paediatric Cardiology</td>
</tr>
<tr>
<td>Ketterer</td>
<td>Naomi</td>
<td>The role of p38 MAPK-signaling in ILC3 effector function</td>
<td>Daniela Finke</td>
<td>Developmental Immunology</td>
</tr>
<tr>
<td>Kollbrunner</td>
<td>Lara</td>
<td>Circumstances of death of preterm infant born at the border of viability</td>
<td>Sven Schulzke</td>
<td>Neonatal Respiratory and Clinical Epidemiology Research Group</td>
</tr>
<tr>
<td>Louwaige</td>
<td>Amber</td>
<td>Unraveling the molecular mechanism of acute erythroid leukemia</td>
<td>Jürg Schwaller</td>
<td>Childhood Leukemia</td>
</tr>
<tr>
<td>Manz</td>
<td>Nora</td>
<td>Evaluation of the current use of imaging modalities and pathogen detection in children with acute osteomyelitis and septic arthritis</td>
<td>Ulrich Heiniger/ Nicole Ritz</td>
<td>Paediatric Infectious Diseases and Vaccinology</td>
</tr>
</tbody>
</table>
Master Thesis

<table>
<thead>
<tr>
<th>Name</th>
<th>First name</th>
<th>Title</th>
<th>Supervisor</th>
<th>Research Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marchetti</td>
<td>Rosalina</td>
<td>The impact of neonatal hypoglycemia on sleep patterns in preterm infants: an observational study</td>
<td>Peter Weber</td>
<td>Paediatric Neurology and Developmental Medicine Group</td>
</tr>
<tr>
<td>Niederschirp</td>
<td>Stefanie</td>
<td>Lean Healthcare: Wie müssen die Prozesse in der Neonatologie optimiert werden, um den Lebensstart von Frühgeborenen zu verbessern</td>
<td>Edgar Kösler</td>
<td></td>
</tr>
<tr>
<td>Pini</td>
<td>Nicola</td>
<td>Water permeability is a measure of severity in acute appendicitis</td>
<td>Stephanie Gros</td>
<td>Molecular strategies in paediatric surgery</td>
</tr>
<tr>
<td>Schönfeld</td>
<td>Natalie</td>
<td>Caffeine treatment of preterm infants: Impact on sleep</td>
<td>Peter Weber</td>
<td>Paediatric Neurology and Developmental Medicine Group</td>
</tr>
<tr>
<td>Schwob</td>
<td>Noemi</td>
<td>Gender-related sleep differences in premature infants</td>
<td>Peter Weber</td>
<td>Paediatric Neurology and Developmental Medicine Group</td>
</tr>
<tr>
<td>Stelz</td>
<td>Joelle</td>
<td>Turbulenz der Adoleszenz: Sitzen Psyche und Physis in einem Boot?</td>
<td>Urs Zumsteg</td>
<td>Paediatric Diabetology</td>
</tr>
<tr>
<td>Stienen</td>
<td>Yvonne</td>
<td>Analyse der Muttermilch von sehr frühgeborenen Kindern mithilfe des MIRIS Human Milk Analyzers</td>
<td>Sven Schulze</td>
<td>Neonatal Respiratory and Clinical Epidemiology Research Group</td>
</tr>
<tr>
<td>Suter</td>
<td>Andrea</td>
<td>Breath-to-breath variability of CO₂ clearance measured after preterm birth is associated with subsequent re-hospitalization risk in infancy</td>
<td>Urs Frey</td>
<td>Paediatrics and Paediatric Pulmonology research group</td>
</tr>
<tr>
<td>Tauchmann</td>
<td>Samantha</td>
<td>Deciphering the role of GATA1 in a novel model of acute erythroleukemia</td>
<td>Jürg Schwaller</td>
<td>Childhood Leukemia</td>
</tr>
<tr>
<td>Tobler</td>
<td>Patrick</td>
<td>Timed function tests, motor function measure, and quantitative thigh muscle MRI in ambulant children with Duchenne muscular dystrophy: A cross-sectional analysis</td>
<td>Dirk Fischer</td>
<td>Neuromuscular Research</td>
</tr>
<tr>
<td>Veysel</td>
<td>Kaya</td>
<td>The Lin28/let7 microRNA feedback axis regulates development and maintenance of thymic epithelia and their capacity for regular T cell selection</td>
<td>Georg Holländer</td>
<td>Paediatric Immunology</td>
</tr>
<tr>
<td>Name</td>
<td>First name</td>
<td>Title</td>
<td>Supervisor</td>
<td>Research Group</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>--</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Volkart</td>
<td>Stefanie</td>
<td>APQ1 in the intestinal tract of mice</td>
<td>Stephanie Gros</td>
<td>Molecular strategies in paediatric surgery</td>
</tr>
<tr>
<td>Weber</td>
<td>Myriam</td>
<td>Fatigue in Childhood Cancer Survivors</td>
<td>Nicolas von der Weid</td>
<td>Outcomes Research in Childhood Cancer</td>
</tr>
<tr>
<td>Wen Dieu</td>
<td>Ly</td>
<td>Prevalence rate of contraindicated drug drug interactions in paediatric inpatients</td>
<td>Johannes van den Anker</td>
<td>Centre for Paediatric Pharmacology and Pharmacometrics (PedPP)</td>
</tr>
<tr>
<td>Name</td>
<td>First name</td>
<td>Organisation</td>
<td>Appointment</td>
<td>Research Group</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Bielicki</td>
<td>Julia</td>
<td>St. George’s University of London</td>
<td>Senior Lecturer at the Institute for Infection and Immunity</td>
<td>Ambulatory Study Center (ASZ)</td>
</tr>
<tr>
<td>Donner</td>
<td>Birgit</td>
<td>Schweizerische Gesellschaft für Pädiatrische Kardiologie, Lausanne</td>
<td>Leiterin der Weiterbildungskommission</td>
<td>Clinical Research in Paediatric Cardiology</td>
</tr>
<tr>
<td>Donner</td>
<td>Birgit</td>
<td>Schweizerische Gesellschaft für Pädiatrische Kardiologie, Lausanne</td>
<td>Prä-Präsidentin</td>
<td>Clinical Research in Paediatric Cardiology</td>
</tr>
<tr>
<td>Frey</td>
<td>Urs</td>
<td>Swiss Personalized Health Network (SPHN)</td>
<td>Chairman of the National Steering Board (NSB) of the Swiss Personalized Health Network (SPHN)</td>
<td>Paediatrics and Paediatric Pulmonology</td>
</tr>
<tr>
<td>Hammer</td>
<td>Jürg</td>
<td>ERS HERMES Prüfungskomitee für Kinderpneumologie</td>
<td>Chair-Elect 2018 President 2019–2022</td>
<td>Paediatrics and Paediatric Pulmonology</td>
</tr>
<tr>
<td>Mayr</td>
<td>Johannes</td>
<td>Moscow Regional Research and Clinical Institute (MONIKI)</td>
<td>Honorary Professor for regular continuing education at paediatric congresses</td>
<td>Surgical Research</td>
</tr>
<tr>
<td>Schwaller</td>
<td>Juerg</td>
<td>European Haematology Association (EHA)</td>
<td>Associated Editor of HemaSphere, the new official EHA journal</td>
<td>Childhood leukemia</td>
</tr>
<tr>
<td>Sinues</td>
<td>Pablo</td>
<td>Swiss Metabolomics Society (SMS)</td>
<td>Vice-President</td>
<td>Translational Medicine Breath Research</td>
</tr>
<tr>
<td>Szinnai</td>
<td>Gabor</td>
<td>Nationale Koordination Seltene Krankheiten KOSEK</td>
<td>Board member</td>
<td>Paediatric Endocrinology</td>
</tr>
</tbody>
</table>
Awards

<table>
<thead>
<tr>
<th>Name</th>
<th>First name</th>
<th>Congress/Society</th>
<th>Project/Title</th>
<th>Research Group</th>
<th>Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almosailleakh Marwa</td>
<td></td>
<td>UKBB Research Days 2017</td>
<td>Role of the NSD1 methyltransferase in steady-state hematopoiesis</td>
<td>Childhood Leukemia</td>
<td>Highest award in the category Experimental Research in Paediatrics</td>
</tr>
<tr>
<td>Buser Sina</td>
<td></td>
<td>UKBB Research Days 2018</td>
<td>Characteristics of asylum-seeking children in need of complex care in a tertiary hospital in Switzerland</td>
<td>Migrant Health Research Group</td>
<td>Oral Presentation Award</td>
</tr>
<tr>
<td>Chawla Raghaw</td>
<td></td>
<td>UKBB Research Days 2018</td>
<td>Delving into the world of Single-Cell-Genomics</td>
<td>Childhood Leukemia</td>
<td>Oral Presentation Award</td>
</tr>
<tr>
<td>Decrue Fabienne</td>
<td></td>
<td>UKBB Research Days 2018</td>
<td>Exposure to moderate air pollution and associations with lung function at school-age: a birth cohort study</td>
<td>Paediatrics and Paediatric Pulmonology</td>
<td>Oral Presentation Award</td>
</tr>
<tr>
<td>Depoorter Antoinette</td>
<td></td>
<td>UKBB Research Days 2017</td>
<td>Neurofilament serum levels as biomarker of neuronal injury in very preterm born infants</td>
<td>Fetal and Neonatal Stress Research Group</td>
<td>Highest Award in the category clinical-epidemiological Research in Paediatrics</td>
</tr>
<tr>
<td>Finke Daniela</td>
<td></td>
<td>University of Basel, Faculty of Medicine</td>
<td></td>
<td>Developmental Immunology</td>
<td>Lecturer of the year, 3rd Place, 2nd year Medical studies</td>
</tr>
<tr>
<td>Furlano Racul</td>
<td></td>
<td>University of Basel, Faculty of Medicine</td>
<td></td>
<td>Paediatric Gastroenterology & Nutrition</td>
<td>Lecturer of the Year 2018, 2nd Place</td>
</tr>
</tbody>
</table>
Awards

<table>
<thead>
<tr>
<th>Name</th>
<th>First Name</th>
<th>Congress/Society</th>
<th>Project/Title</th>
<th>Research Group</th>
<th>Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gmündner</td>
<td>Myriam</td>
<td>UKBB Research Days 2018</td>
<td>Evaluation of recent asylum seeking children at inpatient department in a tertiary health care facility in Switzerland in 2016/17</td>
<td>Migrant Health Research Group</td>
<td>Oral Presentation Award</td>
</tr>
<tr>
<td>Gros</td>
<td>Stephanie</td>
<td>Schweiz. Pädiatrische Onkologie Gruppe (SPOG)</td>
<td>Hypoxia in tumor modulation of neuroblastoma in vitro and in the organotypic slice culture</td>
<td>Molecular strategies in paediatric surgery</td>
<td>Jack Plaschke Award 2018</td>
</tr>
<tr>
<td>Gotta</td>
<td>Verena</td>
<td>UKBB Research Days 2018</td>
<td>Dose optimization of intravenous metamizole in children less than 6 years old – a population pharmacokinetic analysis</td>
<td>Centre for Paediatric Pharmacology and Pharmacometrics (PedPP)</td>
<td>Poster Award</td>
</tr>
<tr>
<td>Krieg</td>
<td>Andreas</td>
<td>Vereinigung für Kinderorthopädie</td>
<td>Virtual periacetabular osteotomy and anatomical measurements – how far from a disaster?</td>
<td>Bone Tumor and Limb Reconstruction Group</td>
<td>Wissenschaftspreis</td>
</tr>
<tr>
<td>Latzin with Yammine</td>
<td>Philipp Sophie</td>
<td>Stiftung Pfizer Forschungspreis</td>
<td>Functional evidence for continued alveorisation in former preterms at school age?</td>
<td>Paediatrics and Paediatric Pulmonology</td>
<td>Pfizer Forschungspreis 2017</td>
</tr>
<tr>
<td>Teufel</td>
<td>Claudia</td>
<td>UKBB Research Days 2018</td>
<td>Role of mTOR Signaling for Group3 Innate Lymphoid Cell Immune Function</td>
<td>Developmental Immunology</td>
<td>Poster Award</td>
</tr>
</tbody>
</table>
Young Investigators

<table>
<thead>
<tr>
<th>Name</th>
<th>First name</th>
<th>Supervisor</th>
<th>Research Group</th>
<th>Program</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brandenberger</td>
<td>Julia</td>
<td>Nicole Ritz</td>
<td>Mycobacterial Research</td>
<td>Special program paediatric research</td>
<td>A systematic evaluation of the care provided to paediatric refugees and asylum seekers at the University Children's Hospital Basel</td>
</tr>
<tr>
<td>Chawla</td>
<td>Raghav</td>
<td>Nicolas Von der Weid</td>
<td>Outcome Research in Paediatric Oncology</td>
<td>Research Fond University Basel</td>
<td>Exploring Cell Heterogeneity and Dynamics Using Massively Parallel Single-Cell Genomics</td>
</tr>
<tr>
<td>Gros</td>
<td>Stephanie</td>
<td>Stefan Holland-Cunz</td>
<td>Surgical Research</td>
<td>Research Fond University Basel</td>
<td>Role of HIF-1/2 in hypoxia dependent regulation of AQP1</td>
</tr>
<tr>
<td>Hafner</td>
<td>Patricia</td>
<td>Dirk Fischer</td>
<td>Neuromuscular Research</td>
<td>Brian Fowler Fond</td>
<td>Partial Support for a one-year research-stay at the Dubowitz Neuromuscular Centre at GOSH in London</td>
</tr>
<tr>
<td>Hafner</td>
<td>Patricia</td>
<td>Dirk Fischer</td>
<td>Neuromuscular Research</td>
<td>Research Fond University Basel</td>
<td>Building a database to establish reference values of electrophysiological examinations in children</td>
</tr>
<tr>
<td>Jost</td>
<td>Kerstin</td>
<td>Sven Schulzke</td>
<td>Neonatal Respiratory and Clinical Epidemiology</td>
<td>Research Fond University Basel</td>
<td>NEO (Neonatal Esophageal Observation) Tube</td>
</tr>
</tbody>
</table>
Young Investigators

<table>
<thead>
<tr>
<th>Name</th>
<th>First name</th>
<th>Supervisor</th>
<th>Research Group</th>
<th>Program</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mack</td>
<td>Ines</td>
<td>Ulrich Heininger</td>
<td>Paediatric Infectious Diseases and Vaccinology</td>
<td>Special program paediatric research</td>
<td>Feasibility of continuous vital signs assessment with wearable devices in paediatric surgical infections: a pilot study</td>
</tr>
<tr>
<td>Schmid</td>
<td>Hanna</td>
<td>Julia Bielicki</td>
<td>Paediatric Infectious Diseases</td>
<td>Special program paediatric research</td>
<td>Perioperative antibiotic prophylaxis in paediatric appendectomies in Switzerland</td>
</tr>
<tr>
<td>Studer</td>
<td>Daniel</td>
<td>Carol C. Hasler</td>
<td>Computational Spine Biomechanics</td>
<td>Research Fond University Basel</td>
<td>Intraoperative in vivo assessment of spinal stiffness with a motorized programmable robotic device</td>
</tr>
<tr>
<td>Tauchmann</td>
<td>Samantha</td>
<td>Jürg Schwaller</td>
<td>Childhood Leukemia</td>
<td>Brian Fowler Fond</td>
<td>Training at the Laboratory of Prof. Thomas Mercher, Gustave Roussy Cancer Institute, Paris</td>
</tr>
<tr>
<td>Usemann</td>
<td>Jakob</td>
<td>Urs Frey</td>
<td>Paediatrics and Paediatric Pneumology</td>
<td>Special program paediatric research</td>
<td>Non-invasive urinary eicosanoid profiles to study acute respiratory tract infections in infancy</td>
</tr>
<tr>
<td>Usemann</td>
<td>Jakob</td>
<td>Urs Frey</td>
<td>Paediatrics and Paediatric Pulmonology</td>
<td>Research Fond University Basel</td>
<td>Exhaled Breath Analysis in paediatric patients exposed to environmental Tobacco Smoke (EBATS): a pilot study</td>
</tr>
</tbody>
</table>

Research Report UKBB 2017 / 2018
Congresses/Symposia 2017/2018 organised by UKBB

<table>
<thead>
<tr>
<th>Congress</th>
<th>Date</th>
<th>Organised by</th>
<th>Research Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Migrant health in private practice</td>
<td>29.–30.06.2017</td>
<td>Ritz Nicole</td>
<td>Migrant Health Research Group</td>
</tr>
<tr>
<td>5th Basel Immunology Focus Symposium (BIFS) in Basel</td>
<td>28.–30.8.2017</td>
<td>Finke Daniela Holländer Georg</td>
<td>Developmental Immunology/ Paediatric Immunology</td>
</tr>
<tr>
<td>9th Scientific meeting at UKBB, Society of Paediatric Cardiology</td>
<td>10.11.2017</td>
<td>Donner Birgit</td>
<td>Clinical Research in Paediatric Cardiology</td>
</tr>
<tr>
<td>Diagnostics and Functional Treatment in CP Gait Disorders.</td>
<td>22.06.2018</td>
<td>Brunner Reinald</td>
<td>Human Locomotion Research</td>
</tr>
<tr>
<td>KWUB (Knochen- und Weichteiltumorzentrum der Universität Basel) Zuwieserevent in Basel, USB</td>
<td>06.09.2018</td>
<td>Krieg Andreas</td>
<td>Bone Tumor and Limb Reconstruction Group</td>
</tr>
<tr>
<td>Basler Symposium für Kinderorthopädie: „Kind und Schmerz“</td>
<td>06.–07.09.2018</td>
<td>Hasler Carol C.</td>
<td>Computational Spine Biomechanics</td>
</tr>
<tr>
<td>9th International Fitbone User Meeting in Basel, UKBB</td>
<td>27.–28.09.2018</td>
<td>Krieg Andreas</td>
<td>Bone Tumor and Limb Reconstruction Group</td>
</tr>
<tr>
<td>Annual GCP course at UKBB together with DKF</td>
<td>06.11.2018</td>
<td>van den Anker Johannes</td>
<td>Centre for Paediatric Pharmacology and Pharmacometrics (PedPP)</td>
</tr>
<tr>
<td>14th Basel Modeling & Simulation Conference (UKBB, Roche, Novartis and Idorsia)</td>
<td>10.–11.09.2018</td>
<td>Pfister Marc</td>
<td>Centre for Paediatric Pharmacology and Pharmacometrics (PedPP)</td>
</tr>
<tr>
<td>10th National Vaccinology Congress, Basel</td>
<td>28.–29.11.2018</td>
<td>Heininger Ulrich</td>
<td>Paediatric Infectious Diseases and Vaccinology</td>
</tr>
</tbody>
</table>
Facts and Figures
Overview Third Party Funds UKBB 2017

<table>
<thead>
<tr>
<th>Category</th>
<th>Balance 1.1.2017 (CHF)</th>
<th>Inflow of Funds (CHF)</th>
<th>Use of Funds (CHF)</th>
<th>Balance 31.12.17 (CHF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competitive Research</td>
<td>1'556'249</td>
<td>5'014'503</td>
<td>-3'302'512</td>
<td>3'268'239</td>
</tr>
<tr>
<td>Non-Competitive Research</td>
<td>2'341'256</td>
<td>3'438'651</td>
<td>-3'504'157</td>
<td>2'275'750</td>
</tr>
<tr>
<td>Research and Teaching</td>
<td>640'752</td>
<td>247'916</td>
<td>-302'225</td>
<td>586'443</td>
</tr>
<tr>
<td>Patients</td>
<td>1'809'125</td>
<td>937'540</td>
<td>-1'280'835</td>
<td>1'465'831</td>
</tr>
<tr>
<td>Total</td>
<td>6'347'382</td>
<td>9'638'610</td>
<td>-8'389'728</td>
<td>7'596'263</td>
</tr>
<tr>
<td>Research Total</td>
<td>3'897'505</td>
<td>8'453'154</td>
<td>-6'806'669</td>
<td>5'543'989</td>
</tr>
<tr>
<td>Thereof competitive</td>
<td>1'556'249</td>
<td>5'014'503</td>
<td>-3'302'512</td>
<td>3'268'239</td>
</tr>
<tr>
<td>% Competitive of Total</td>
<td>40%</td>
<td>59%</td>
<td>49%</td>
<td>59%</td>
</tr>
<tr>
<td>EU-Funding</td>
<td>294'516</td>
<td>1'233'481</td>
<td>-999'396</td>
<td>528'601</td>
</tr>
<tr>
<td>% EU-Funding of Total</td>
<td>8%</td>
<td>15%</td>
<td>15%</td>
<td>10%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Administered by</th>
<th>Balance 1.1.2017 (CHF)</th>
<th>Inflow of Funds (CHF)</th>
<th>Use of Funds (CHF)</th>
<th>Balance 31.12.17 (CHF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UKBB</td>
<td>5'217'830</td>
<td>4'109'672</td>
<td>-4'336'236</td>
<td>4'991'266</td>
</tr>
<tr>
<td>Uni Basel</td>
<td>1'155'201</td>
<td>3'557'090</td>
<td>-2'108'133</td>
<td>2'604'158</td>
</tr>
<tr>
<td>USB</td>
<td>-25'649</td>
<td>76'327</td>
<td>-49'838</td>
<td>840</td>
</tr>
<tr>
<td>Uni BS/UKBB</td>
<td>0</td>
<td>1'895'521</td>
<td>-1'895'521</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>6'347'382</td>
<td>9'638'610</td>
<td>-8'389'728</td>
<td>7'596'263</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DBM</th>
<th>Balance 1.1.2017 (CHF)</th>
<th>Inflow of Funds (CHF)</th>
<th>Use of Funds (CHF)</th>
<th>Balance 31.12.17 (CHF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBM UKBB</td>
<td>298'789</td>
<td>489'628</td>
<td>-430'698</td>
<td>357'718</td>
</tr>
<tr>
<td>DBM Unibas</td>
<td>401'864</td>
<td>541'769</td>
<td>-334'995</td>
<td>608'638</td>
</tr>
<tr>
<td>DBM USB</td>
<td>-25'649</td>
<td>76'327</td>
<td>-49'838</td>
<td>840</td>
</tr>
<tr>
<td>Total</td>
<td>675'004</td>
<td>1'107'723</td>
<td>-815'531</td>
<td>967'196</td>
</tr>
</tbody>
</table>
Overview Third Party Funds UKBB 2018

<table>
<thead>
<tr>
<th>Category</th>
<th>Balance 1.1.2018 (CHF)</th>
<th>Inflow of Funds (CHF)</th>
<th>Use of Funds (CHF)</th>
<th>Balance 31.12.18 (CHF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competitive Research</td>
<td>3'249'491</td>
<td>3'574'897</td>
<td>-3'435'940</td>
<td>3'388'448</td>
</tr>
<tr>
<td>Non-Competitive Research</td>
<td>1'956'850</td>
<td>4'080'080</td>
<td>-3'958'247</td>
<td>2'078'683</td>
</tr>
<tr>
<td>Research and Teaching</td>
<td>633'525</td>
<td>917'605</td>
<td>-579'086</td>
<td>972'044</td>
</tr>
<tr>
<td>Patients</td>
<td>1'465'831</td>
<td>926'995</td>
<td>-996'295</td>
<td>1'396'531</td>
</tr>
<tr>
<td>Total</td>
<td>7'305'698</td>
<td>9'499'577</td>
<td>-8'969'569</td>
<td>7'835'706</td>
</tr>
<tr>
<td>Research Total</td>
<td>5'206'341</td>
<td>7'654'977</td>
<td>-7'394'187</td>
<td>5'467'131</td>
</tr>
<tr>
<td>Thereof competitive</td>
<td>3'249'491</td>
<td>3'574'897</td>
<td>-3'435'940</td>
<td>3'388'448</td>
</tr>
<tr>
<td>% Competitive of Total</td>
<td>62%</td>
<td>47%</td>
<td>46%</td>
<td>62%</td>
</tr>
<tr>
<td>EU-Funding</td>
<td>528'601</td>
<td>60'914</td>
<td>-469'773</td>
<td>119'741</td>
</tr>
<tr>
<td>% EU-Funding of Total</td>
<td>10%</td>
<td>1%</td>
<td>6%</td>
<td>2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Administered by</th>
<th>Balance 1.1.2018 (CHF)</th>
<th>Inflow of Funds (CHF)</th>
<th>Use of Funds (CHF)</th>
<th>Balance 31.12.18 (CHF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UKBB</td>
<td>4'991'266</td>
<td>4'969'844</td>
<td>-4'379'564</td>
<td>5'581'546</td>
</tr>
<tr>
<td>Uni Basel</td>
<td>2'313'592</td>
<td>2'118'390</td>
<td>-2'178'661</td>
<td>2'253'321</td>
</tr>
<tr>
<td>USB</td>
<td>840</td>
<td>96'838</td>
<td>-96'838</td>
<td>840</td>
</tr>
<tr>
<td>Uni BS/UKBB</td>
<td>0</td>
<td>2'314'506</td>
<td>-2'314'506</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>7'305'698</td>
<td>9'499'577</td>
<td>-8'969'569</td>
<td>7'835'706</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DBM</th>
<th>Balance 1.1.2018 (CHF)</th>
<th>Inflow of Funds (CHF)</th>
<th>Use of Funds (CHF)</th>
<th>Balance 31.12.18 (CHF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBM UKBB</td>
<td>357'718</td>
<td>94'156</td>
<td>-209'507</td>
<td>242'368</td>
</tr>
<tr>
<td>DBM Unibas</td>
<td>608'638</td>
<td>549'465</td>
<td>-528'308</td>
<td>629'794</td>
</tr>
<tr>
<td>DBM USB</td>
<td>840</td>
<td>96'838</td>
<td>-96'838</td>
<td>840</td>
</tr>
<tr>
<td>Total</td>
<td>967'196</td>
<td>740'459</td>
<td>-834'652</td>
<td>873'002</td>
</tr>
</tbody>
</table>
Change of Third Party Funds UKBB 2017/2018

<table>
<thead>
<tr>
<th>Balance 1.1. (CHF)</th>
<th>Inflow of Funds (CHF)</th>
<th>Use of Funds (CHF)</th>
<th>Balance 31.12. (CHF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1'693'242</td>
<td>-1'439'606</td>
<td>-133'428</td>
<td>120'209</td>
</tr>
<tr>
<td>-384'406</td>
<td>641'429</td>
<td>-454'090</td>
<td>-197'067</td>
</tr>
<tr>
<td>-7'226</td>
<td>669'689</td>
<td>-276'862</td>
<td>385'601</td>
</tr>
<tr>
<td>-343'294</td>
<td>-10'545</td>
<td>284'539</td>
<td>-69'300</td>
</tr>
<tr>
<td>958'316</td>
<td>-139'032</td>
<td>-579'841</td>
<td>239'443</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1'308'837</td>
<td>-798'177</td>
<td>-587'518</td>
<td>-76'858</td>
</tr>
<tr>
<td>1'693'242</td>
<td>-1'439'606</td>
<td>-133'428</td>
<td>120'209</td>
</tr>
<tr>
<td>22 %</td>
<td>-13 %</td>
<td>-2 %</td>
<td>3 %</td>
</tr>
<tr>
<td>234'085</td>
<td>-1'172'567</td>
<td>529'623</td>
<td>-408'859</td>
</tr>
<tr>
<td>3 %</td>
<td>-14 %</td>
<td>-8 %</td>
<td>-7 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balance 1.1. (CHF)</td>
<td>Inflow of Funds (CHF)</td>
<td>Use of Funds (CHF)</td>
<td>Balance 31.12. (CHF)</td>
</tr>
<tr>
<td>-226'564</td>
<td>860'172</td>
<td>-43'328</td>
<td>590'280</td>
</tr>
<tr>
<td>1'158'391</td>
<td>-1'438'700</td>
<td>-70'528</td>
<td>-350'837</td>
</tr>
<tr>
<td>26'489</td>
<td>20'511</td>
<td>-47'000</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>418'985</td>
<td>-418'985</td>
<td>0</td>
</tr>
<tr>
<td>958'316</td>
<td>-139'032</td>
<td>-579'841</td>
<td>239'443</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balance 1.1. (CHF)</td>
<td>Inflow of Funds (CHF)</td>
<td>Use of Funds (CHF)</td>
<td>Balance 31.12. (CHF)</td>
</tr>
<tr>
<td>58'929</td>
<td>-395'472</td>
<td>221'192</td>
<td>-115'351</td>
</tr>
<tr>
<td>206'773</td>
<td>7'696</td>
<td>-193'313</td>
<td>21'157</td>
</tr>
<tr>
<td>26'489</td>
<td>20'511</td>
<td>-47'000</td>
<td>0</td>
</tr>
<tr>
<td>292'192</td>
<td>-367'265</td>
<td>-19'121</td>
<td>-94'194</td>
</tr>
</tbody>
</table>
University Budget and Third-Party Funds

<table>
<thead>
<tr>
<th>Year</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Budget</td>
<td>8.93</td>
<td>8.95</td>
<td>9.12</td>
<td>8.95</td>
</tr>
<tr>
<td>Million (CHF)</td>
<td></td>
<td></td>
<td></td>
<td>8.95</td>
</tr>
<tr>
<td>External funds</td>
<td>5.56</td>
<td>6.19</td>
<td>8.45</td>
<td>7.65</td>
</tr>
<tr>
<td>Million (CHF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distribution of the Research Funds by Categories (CHF)

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount (CHF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botnar Professorship</td>
<td>472'876</td>
</tr>
<tr>
<td>Eckenstein-Geigy Professorship</td>
<td>1'538'731</td>
</tr>
<tr>
<td>EU</td>
<td>60'914</td>
</tr>
<tr>
<td>Research Fund Junior Researchers (University)</td>
<td>159'116</td>
</tr>
<tr>
<td>SNF</td>
<td>1'737'778</td>
</tr>
<tr>
<td>Special Program Paediatric Research</td>
<td>443'900</td>
</tr>
<tr>
<td>University Budget</td>
<td>8'954'171</td>
</tr>
<tr>
<td>Other foundations and donations</td>
<td>3'685'563</td>
</tr>
<tr>
<td>Total</td>
<td>17'053'048</td>
</tr>
</tbody>
</table>

Funding by Research Areas (CHF)

<table>
<thead>
<tr>
<th>Area</th>
<th>Amount (CHF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunology (2)</td>
<td>646'229</td>
</tr>
<tr>
<td>Infectiology and Vaccinology/Brigton Collaboration (3)</td>
<td>569'839</td>
</tr>
<tr>
<td>Neuropaediatrics (2)</td>
<td>1'104'948</td>
</tr>
<tr>
<td>Oncology/Haematology (3)</td>
<td>772'477</td>
</tr>
<tr>
<td>Orthopaedics/Neuroorthopaedics (3)</td>
<td>176'206</td>
</tr>
<tr>
<td>Pharmacology (2)</td>
<td>2'166'615</td>
</tr>
<tr>
<td>Pneumology/Neonatology (5)</td>
<td>1'756'292</td>
</tr>
<tr>
<td>Surgery (2)</td>
<td>20'000</td>
</tr>
<tr>
<td>Others</td>
<td>442'372</td>
</tr>
<tr>
<td>Total</td>
<td>7'654'978</td>
</tr>
</tbody>
</table>

* Number PI's
Employees and Publications

Gender Distribution/UKBB Research

<table>
<thead>
<tr>
<th>Role</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>Research Group Leader</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Project Leader</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>Postdoc, PhD</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Clinician-Researcher</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>Student</td>
<td>17</td>
<td>29</td>
</tr>
<tr>
<td>Study Nurse/Technician/Data Manager</td>
<td>3</td>
<td>34</td>
</tr>
</tbody>
</table>

Number of published articles 2013–2018

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>Peer reviewed article</th>
<th>Review</th>
<th>Editorial material</th>
<th>Letter</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>144</td>
<td>34</td>
<td>25</td>
<td>152</td>
<td>157</td>
<td>144</td>
</tr>
<tr>
<td>2014</td>
<td>158</td>
<td>34</td>
<td>29</td>
<td>200</td>
<td>193</td>
<td>158</td>
</tr>
<tr>
<td>2015**</td>
<td>219</td>
<td>34</td>
<td>42</td>
<td>200</td>
<td>193</td>
<td>219</td>
</tr>
<tr>
<td>2016**</td>
<td>206</td>
<td>37</td>
<td>46</td>
<td>200</td>
<td>193</td>
<td>206</td>
</tr>
<tr>
<td>2017**</td>
<td>324</td>
<td>37</td>
<td>46</td>
<td>200</td>
<td>193</td>
<td>324</td>
</tr>
<tr>
<td>2018**</td>
<td>290</td>
<td>31</td>
<td>46</td>
<td>200</td>
<td>193</td>
<td>290</td>
</tr>
</tbody>
</table>

* from 2015 onwards reviews, editorials and others were separately listed
** meeting reports and abstracts excluded